Properties

Label 30.0.27652541257...3712.1
Degree $30$
Signature $[0, 15]$
Discriminant $-\,2^{45}\cdot 7^{20}\cdot 11^{24}$
Root discriminant $70.48$
Ramified primes $2, 7, 11$
Class number $504080$ (GRH)
Class group $[2, 2, 2, 63010]$ (GRH)
Galois group $C_{30}$ (as 30T1)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1205881601, -385672188, 2600745170, -653724964, 2661692327, -498857406, 1686428990, -222989416, 742997779, -69901890, 244339329, -19483620, 62967354, -5855334, 13159287, -1463962, 2223136, -245272, 322087, -23206, 45434, -6464, 5658, 458, -157, -256, 174, 22, -13, -2, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^30 - 2*x^29 - 13*x^28 + 22*x^27 + 174*x^26 - 256*x^25 - 157*x^24 + 458*x^23 + 5658*x^22 - 6464*x^21 + 45434*x^20 - 23206*x^19 + 322087*x^18 - 245272*x^17 + 2223136*x^16 - 1463962*x^15 + 13159287*x^14 - 5855334*x^13 + 62967354*x^12 - 19483620*x^11 + 244339329*x^10 - 69901890*x^9 + 742997779*x^8 - 222989416*x^7 + 1686428990*x^6 - 498857406*x^5 + 2661692327*x^4 - 653724964*x^3 + 2600745170*x^2 - 385672188*x + 1205881601)
 
gp: K = bnfinit(x^30 - 2*x^29 - 13*x^28 + 22*x^27 + 174*x^26 - 256*x^25 - 157*x^24 + 458*x^23 + 5658*x^22 - 6464*x^21 + 45434*x^20 - 23206*x^19 + 322087*x^18 - 245272*x^17 + 2223136*x^16 - 1463962*x^15 + 13159287*x^14 - 5855334*x^13 + 62967354*x^12 - 19483620*x^11 + 244339329*x^10 - 69901890*x^9 + 742997779*x^8 - 222989416*x^7 + 1686428990*x^6 - 498857406*x^5 + 2661692327*x^4 - 653724964*x^3 + 2600745170*x^2 - 385672188*x + 1205881601, 1)
 

Normalized defining polynomial

\( x^{30} - 2 x^{29} - 13 x^{28} + 22 x^{27} + 174 x^{26} - 256 x^{25} - 157 x^{24} + 458 x^{23} + 5658 x^{22} - 6464 x^{21} + 45434 x^{20} - 23206 x^{19} + 322087 x^{18} - 245272 x^{17} + 2223136 x^{16} - 1463962 x^{15} + 13159287 x^{14} - 5855334 x^{13} + 62967354 x^{12} - 19483620 x^{11} + 244339329 x^{10} - 69901890 x^{9} + 742997779 x^{8} - 222989416 x^{7} + 1686428990 x^{6} - 498857406 x^{5} + 2661692327 x^{4} - 653724964 x^{3} + 2600745170 x^{2} - 385672188 x + 1205881601 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $30$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 15]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-27652541257338422096297668839356545284021085927702003712=-\,2^{45}\cdot 7^{20}\cdot 11^{24}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $70.48$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 7, 11$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(616=2^{3}\cdot 7\cdot 11\)
Dirichlet character group:    $\lbrace$$\chi_{616}(1,·)$, $\chi_{616}(603,·)$, $\chi_{616}(515,·)$, $\chi_{616}(449,·)$, $\chi_{616}(9,·)$, $\chi_{616}(267,·)$, $\chi_{616}(499,·)$, $\chi_{616}(401,·)$, $\chi_{616}(323,·)$, $\chi_{616}(529,·)$, $\chi_{616}(345,·)$, $\chi_{616}(225,·)$, $\chi_{616}(25,·)$, $\chi_{616}(331,·)$, $\chi_{616}(155,·)$, $\chi_{616}(361,·)$, $\chi_{616}(289,·)$, $\chi_{616}(67,·)$, $\chi_{616}(291,·)$, $\chi_{616}(113,·)$, $\chi_{616}(163,·)$, $\chi_{616}(81,·)$, $\chi_{616}(379,·)$, $\chi_{616}(169,·)$, $\chi_{616}(555,·)$, $\chi_{616}(177,·)$, $\chi_{616}(179,·)$, $\chi_{616}(235,·)$, $\chi_{616}(137,·)$, $\chi_{616}(443,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $\frac{1}{43} a^{25} - \frac{3}{43} a^{24} - \frac{14}{43} a^{23} - \frac{11}{43} a^{22} + \frac{3}{43} a^{21} - \frac{8}{43} a^{20} - \frac{21}{43} a^{19} - \frac{8}{43} a^{18} - \frac{18}{43} a^{17} - \frac{8}{43} a^{16} - \frac{4}{43} a^{15} + \frac{17}{43} a^{14} - \frac{6}{43} a^{13} - \frac{20}{43} a^{12} - \frac{3}{43} a^{11} - \frac{6}{43} a^{10} - \frac{10}{43} a^{9} + \frac{20}{43} a^{8} - \frac{13}{43} a^{7} - \frac{14}{43} a^{6} - \frac{14}{43} a^{5} - \frac{18}{43} a^{4} - \frac{20}{43} a^{3} - \frac{16}{43} a^{2} - \frac{10}{43} a - \frac{11}{43}$, $\frac{1}{43} a^{26} + \frac{20}{43} a^{24} - \frac{10}{43} a^{23} + \frac{13}{43} a^{22} + \frac{1}{43} a^{21} - \frac{2}{43} a^{20} + \frac{15}{43} a^{19} + \frac{1}{43} a^{18} - \frac{19}{43} a^{17} + \frac{15}{43} a^{16} + \frac{5}{43} a^{15} + \frac{2}{43} a^{14} + \frac{5}{43} a^{13} - \frac{20}{43} a^{12} - \frac{15}{43} a^{11} + \frac{15}{43} a^{10} - \frac{10}{43} a^{9} + \frac{4}{43} a^{8} - \frac{10}{43} a^{7} - \frac{13}{43} a^{6} - \frac{17}{43} a^{5} + \frac{12}{43} a^{4} + \frac{10}{43} a^{3} - \frac{15}{43} a^{2} + \frac{2}{43} a + \frac{10}{43}$, $\frac{1}{43} a^{27} + \frac{7}{43} a^{24} - \frac{8}{43} a^{23} + \frac{6}{43} a^{22} - \frac{19}{43} a^{21} + \frac{3}{43} a^{20} - \frac{9}{43} a^{19} + \frac{12}{43} a^{18} - \frac{12}{43} a^{17} - \frac{7}{43} a^{16} - \frac{4}{43} a^{15} + \frac{9}{43} a^{14} + \frac{14}{43} a^{13} - \frac{2}{43} a^{12} - \frac{11}{43} a^{11} - \frac{19}{43} a^{10} - \frac{11}{43} a^{9} + \frac{20}{43} a^{8} - \frac{11}{43} a^{7} + \frac{5}{43} a^{6} - \frac{9}{43} a^{5} - \frac{17}{43} a^{4} - \frac{2}{43} a^{3} + \frac{21}{43} a^{2} - \frac{5}{43} a + \frac{5}{43}$, $\frac{1}{180175181801} a^{28} - \frac{157019561}{180175181801} a^{27} + \frac{1985005653}{180175181801} a^{26} - \frac{305886139}{180175181801} a^{25} + \frac{62287195924}{180175181801} a^{24} + \frac{3072955712}{180175181801} a^{23} + \frac{74487560585}{180175181801} a^{22} - \frac{36133755933}{180175181801} a^{21} - \frac{77269191945}{180175181801} a^{20} - \frac{32517971040}{180175181801} a^{19} - \frac{15319936459}{180175181801} a^{18} + \frac{28736711641}{180175181801} a^{17} + \frac{33810517844}{180175181801} a^{16} + \frac{43431815719}{180175181801} a^{15} - \frac{15766427892}{180175181801} a^{14} + \frac{66619162112}{180175181801} a^{13} + \frac{63466494868}{180175181801} a^{12} - \frac{25807278881}{180175181801} a^{11} - \frac{88274015730}{180175181801} a^{10} + \frac{83936878599}{180175181801} a^{9} - \frac{6209520978}{180175181801} a^{8} + \frac{33736557218}{180175181801} a^{7} + \frac{74998442536}{180175181801} a^{6} - \frac{28520140898}{180175181801} a^{5} + \frac{31005092690}{180175181801} a^{4} + \frac{53048364337}{180175181801} a^{3} - \frac{30404652651}{180175181801} a^{2} - \frac{71579929061}{180175181801} a + \frac{46276336215}{180175181801}$, $\frac{1}{12258719728894131393966157704701886570410678319950766162027957053287046635993939769784516364891535088961058740200353099} a^{29} + \frac{19067160184764329096228294121381301803745851432074574956076023558218985162570415604286258096347415646726063}{12258719728894131393966157704701886570410678319950766162027957053287046635993939769784516364891535088961058740200353099} a^{28} + \frac{68013964606829249439116544202991455270449232564490579530637799586388715855290101935410393550470344168699441739028659}{12258719728894131393966157704701886570410678319950766162027957053287046635993939769784516364891535088961058740200353099} a^{27} - \frac{10082182852928025874871553832337850137979166467158348112454625427869152379217604361773752681766804027727541127187777}{12258719728894131393966157704701886570410678319950766162027957053287046635993939769784516364891535088961058740200353099} a^{26} + \frac{65074195024764482804013306318694532483382956639254362112463896945714237423387417323118344552367473652629197642199886}{12258719728894131393966157704701886570410678319950766162027957053287046635993939769784516364891535088961058740200353099} a^{25} - \frac{122750026922498487418237707133180415930092603690088407797707944096323816794793742005800530664447480180161762096238858}{12258719728894131393966157704701886570410678319950766162027957053287046635993939769784516364891535088961058740200353099} a^{24} + \frac{5801909320885255571465570915760557854378184165148018817427257924233304076511301317160546640485804051057957751517749295}{12258719728894131393966157704701886570410678319950766162027957053287046635993939769784516364891535088961058740200353099} a^{23} + \frac{4889270574522129499562435778557059805066651378819954413801249960821481848214066814021850092201117565850799896176511803}{12258719728894131393966157704701886570410678319950766162027957053287046635993939769784516364891535088961058740200353099} a^{22} + \frac{4055174889617764897487339241680416674202136873119448477396105482224343208079616023148957976075467061725129680204314837}{12258719728894131393966157704701886570410678319950766162027957053287046635993939769784516364891535088961058740200353099} a^{21} - \frac{4473848254940155911754600349164320753749978492796000941788943594246323740358882792424422011130474087959394182271423957}{12258719728894131393966157704701886570410678319950766162027957053287046635993939769784516364891535088961058740200353099} a^{20} + \frac{5651565905721218487227702123197924414272327215672396093631937828243834817608786208615982102178732961805427866103153041}{12258719728894131393966157704701886570410678319950766162027957053287046635993939769784516364891535088961058740200353099} a^{19} - \frac{4404828510180104204689491000057265026583921305875838671106090761446333288488581706523866771952109079120803166007737258}{12258719728894131393966157704701886570410678319950766162027957053287046635993939769784516364891535088961058740200353099} a^{18} - \frac{101448216848280648737092509916403878859252394343052580828372450294616425017783750122813663758912956273173998487392846}{285086505323119334743399016388415966753736705115134096791347838448535968278928831855453868950965932301419970702333793} a^{17} + \frac{2176005570605928922412593584957541491700788418471414255982031172121891421781663232580118994754846105694755108044950577}{12258719728894131393966157704701886570410678319950766162027957053287046635993939769784516364891535088961058740200353099} a^{16} + \frac{5409288234160934936917426028949940670346048444313760515867430292736303607998482599228923237328093160766639114996614137}{12258719728894131393966157704701886570410678319950766162027957053287046635993939769784516364891535088961058740200353099} a^{15} + \frac{2836429304064594248161341785459182392400847924273720722243215607535665689724722443071179124227677923040442419828276651}{12258719728894131393966157704701886570410678319950766162027957053287046635993939769784516364891535088961058740200353099} a^{14} - \frac{3394142183572594047234603661384367853694705673602814189430864428576215840050550750614996940587981877094983626474384527}{12258719728894131393966157704701886570410678319950766162027957053287046635993939769784516364891535088961058740200353099} a^{13} + \frac{5381927414480717103051207045420252011106865010835377150994268240519087216873550710334731713384495343921958782807549434}{12258719728894131393966157704701886570410678319950766162027957053287046635993939769784516364891535088961058740200353099} a^{12} - \frac{3375029777198668535934593250143684622407471354236454435685818670456348872964012205725584475618814093046376608328243765}{12258719728894131393966157704701886570410678319950766162027957053287046635993939769784516364891535088961058740200353099} a^{11} - \frac{3481491256184220371313740206536394319809747088015550500648847311199742598353884602495479758171494846278085373619818738}{12258719728894131393966157704701886570410678319950766162027957053287046635993939769784516364891535088961058740200353099} a^{10} + \frac{2516934132414463968277585451188566267697462205650188383197493881958597443937495146169756155819002167939740432423693465}{12258719728894131393966157704701886570410678319950766162027957053287046635993939769784516364891535088961058740200353099} a^{9} - \frac{3304360775241279162495506561137827265483679561969878142324352657337609078207494704734553419098270398647753902133292775}{12258719728894131393966157704701886570410678319950766162027957053287046635993939769784516364891535088961058740200353099} a^{8} - \frac{1463207115746123736151876333965369215459340091837446981772052054543063138768202411741772659712680817291421211938929498}{12258719728894131393966157704701886570410678319950766162027957053287046635993939769784516364891535088961058740200353099} a^{7} + \frac{2809048224359946689458718312680828734894418732295247428298029802966433554908668301959930882298308170065821313532946504}{12258719728894131393966157704701886570410678319950766162027957053287046635993939769784516364891535088961058740200353099} a^{6} + \frac{3213746645261622667477362974223586273668223236002958435087738987316061447330376017630074648049377847211948299476157403}{12258719728894131393966157704701886570410678319950766162027957053287046635993939769784516364891535088961058740200353099} a^{5} - \frac{4361469968970028474833062294717070516016934069954843257167168210584737935318263212250840906282997360514238181567494854}{12258719728894131393966157704701886570410678319950766162027957053287046635993939769784516364891535088961058740200353099} a^{4} + \frac{533856475848448764351436810922459362721728077095648925437796882739945850122220545830408286194491403902567757166653958}{12258719728894131393966157704701886570410678319950766162027957053287046635993939769784516364891535088961058740200353099} a^{3} + \frac{2599569195916280440118148647715743917569558120519614087538441876301354131701391006158026355808627037485510188969316184}{12258719728894131393966157704701886570410678319950766162027957053287046635993939769784516364891535088961058740200353099} a^{2} - \frac{3856041508698190878982298915044056731635941630741512623464227184398414815918402837859464114927563537448957040427867142}{12258719728894131393966157704701886570410678319950766162027957053287046635993939769784516364891535088961058740200353099} a - \frac{4561980823728010806321275288202747379406785732327631386786336808128710410488642817562322595956420910808065971629890013}{12258719728894131393966157704701886570410678319950766162027957053287046635993939769784516364891535088961058740200353099}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}\times C_{2}\times C_{2}\times C_{63010}$, which has order $504080$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $14$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 4697581952.048968 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_{30}$ (as 30T1):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A cyclic group of order 30
The 30 conjugacy class representatives for $C_{30}$
Character table for $C_{30}$ is not computed

Intermediate fields

\(\Q(\sqrt{-2}) \), \(\Q(\zeta_{7})^+\), \(\Q(\zeta_{11})^+\), 6.0.1229312.1, 10.0.7024111812608.1, 15.15.886528337182930278529.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R $15^{2}$ $30$ R R ${\href{/LocalNumberField/13.10.0.1}{10} }^{3}$ $15^{2}$ $15^{2}$ ${\href{/LocalNumberField/23.6.0.1}{6} }^{5}$ ${\href{/LocalNumberField/29.10.0.1}{10} }^{3}$ $30$ $30$ ${\href{/LocalNumberField/41.5.0.1}{5} }^{6}$ ${\href{/LocalNumberField/43.1.0.1}{1} }^{30}$ $30$ $30$ $15^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
7Data not computed
$11$11.15.12.1$x^{15} + 165 x^{10} + 5324 x^{5} + 323433$$5$$3$$12$$C_{15}$$[\ ]_{5}^{3}$
11.15.12.1$x^{15} + 165 x^{10} + 5324 x^{5} + 323433$$5$$3$$12$$C_{15}$$[\ ]_{5}^{3}$