Properties

Label 30.0.27201824077...6663.1
Degree $30$
Signature $[0, 15]$
Discriminant $-\,7^{15}\cdot 31^{28}$
Root discriminant $65.24$
Ramified primes $7, 31$
Class number $98087$ (GRH)
Class group $[98087]$ (GRH)
Galois group $C_{30}$ (as 30T1)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![32768, -131072, 1736704, 114688, 14938112, -2150400, 51674112, -6087168, 93815424, -11108608, 103832512, -11738464, 76055528, -8209064, 38900494, -3945405, 14360768, -1351484, 3902536, -334398, 786528, -59978, 117056, -7673, 12608, -674, 940, -37, 44, -1, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^30 - x^29 + 44*x^28 - 37*x^27 + 940*x^26 - 674*x^25 + 12608*x^24 - 7673*x^23 + 117056*x^22 - 59978*x^21 + 786528*x^20 - 334398*x^19 + 3902536*x^18 - 1351484*x^17 + 14360768*x^16 - 3945405*x^15 + 38900494*x^14 - 8209064*x^13 + 76055528*x^12 - 11738464*x^11 + 103832512*x^10 - 11108608*x^9 + 93815424*x^8 - 6087168*x^7 + 51674112*x^6 - 2150400*x^5 + 14938112*x^4 + 114688*x^3 + 1736704*x^2 - 131072*x + 32768)
 
gp: K = bnfinit(x^30 - x^29 + 44*x^28 - 37*x^27 + 940*x^26 - 674*x^25 + 12608*x^24 - 7673*x^23 + 117056*x^22 - 59978*x^21 + 786528*x^20 - 334398*x^19 + 3902536*x^18 - 1351484*x^17 + 14360768*x^16 - 3945405*x^15 + 38900494*x^14 - 8209064*x^13 + 76055528*x^12 - 11738464*x^11 + 103832512*x^10 - 11108608*x^9 + 93815424*x^8 - 6087168*x^7 + 51674112*x^6 - 2150400*x^5 + 14938112*x^4 + 114688*x^3 + 1736704*x^2 - 131072*x + 32768, 1)
 

Normalized defining polynomial

\( x^{30} - x^{29} + 44 x^{28} - 37 x^{27} + 940 x^{26} - 674 x^{25} + 12608 x^{24} - 7673 x^{23} + 117056 x^{22} - 59978 x^{21} + 786528 x^{20} - 334398 x^{19} + 3902536 x^{18} - 1351484 x^{17} + 14360768 x^{16} - 3945405 x^{15} + 38900494 x^{14} - 8209064 x^{13} + 76055528 x^{12} - 11738464 x^{11} + 103832512 x^{10} - 11108608 x^{9} + 93815424 x^{8} - 6087168 x^{7} + 51674112 x^{6} - 2150400 x^{5} + 14938112 x^{4} + 114688 x^{3} + 1736704 x^{2} - 131072 x + 32768 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $30$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 15]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-2720182407758598253643604359419657198151006682611956663=-\,7^{15}\cdot 31^{28}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $65.24$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $7, 31$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(217=7\cdot 31\)
Dirichlet character group:    $\lbrace$$\chi_{217}(64,·)$, $\chi_{217}(1,·)$, $\chi_{217}(195,·)$, $\chi_{217}(132,·)$, $\chi_{217}(69,·)$, $\chi_{217}(134,·)$, $\chi_{217}(71,·)$, $\chi_{217}(8,·)$, $\chi_{217}(76,·)$, $\chi_{217}(202,·)$, $\chi_{217}(204,·)$, $\chi_{217}(78,·)$, $\chi_{217}(211,·)$, $\chi_{217}(20,·)$, $\chi_{217}(169,·)$, $\chi_{217}(90,·)$, $\chi_{217}(160,·)$, $\chi_{217}(97,·)$, $\chi_{217}(162,·)$, $\chi_{217}(36,·)$, $\chi_{217}(41,·)$, $\chi_{217}(174,·)$, $\chi_{217}(111,·)$, $\chi_{217}(113,·)$, $\chi_{217}(50,·)$, $\chi_{217}(118,·)$, $\chi_{217}(183,·)$, $\chi_{217}(188,·)$, $\chi_{217}(125,·)$, $\chi_{217}(190,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{2} a^{16} - \frac{1}{2} a^{15} - \frac{1}{2} a^{13} - \frac{1}{2} a^{9} - \frac{1}{2} a$, $\frac{1}{4} a^{17} - \frac{1}{4} a^{16} - \frac{1}{4} a^{14} - \frac{1}{2} a^{12} - \frac{1}{4} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{8} a^{18} - \frac{1}{8} a^{17} - \frac{1}{8} a^{15} - \frac{1}{2} a^{14} + \frac{1}{4} a^{13} - \frac{1}{8} a^{11} + \frac{1}{4} a^{9} + \frac{1}{4} a^{7} - \frac{1}{2} a^{5} + \frac{3}{8} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{16} a^{19} - \frac{1}{16} a^{18} - \frac{1}{16} a^{16} + \frac{1}{4} a^{15} - \frac{3}{8} a^{14} - \frac{1}{2} a^{13} - \frac{1}{16} a^{12} + \frac{1}{8} a^{10} - \frac{1}{2} a^{9} - \frac{3}{8} a^{8} - \frac{1}{2} a^{7} - \frac{1}{4} a^{6} + \frac{3}{16} a^{4} - \frac{1}{8} a^{3} + \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{32} a^{20} - \frac{1}{32} a^{19} - \frac{1}{32} a^{17} + \frac{1}{8} a^{16} - \frac{3}{16} a^{15} - \frac{1}{4} a^{14} - \frac{1}{32} a^{13} - \frac{1}{2} a^{12} + \frac{1}{16} a^{11} + \frac{1}{4} a^{10} - \frac{3}{16} a^{9} - \frac{1}{4} a^{8} + \frac{3}{8} a^{7} - \frac{1}{2} a^{6} - \frac{13}{32} a^{5} + \frac{7}{16} a^{4} - \frac{3}{8} a^{3} + \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{64} a^{21} - \frac{1}{64} a^{20} - \frac{1}{64} a^{18} + \frac{1}{16} a^{17} - \frac{3}{32} a^{16} + \frac{3}{8} a^{15} + \frac{31}{64} a^{14} + \frac{1}{4} a^{13} + \frac{1}{32} a^{12} - \frac{3}{8} a^{11} + \frac{13}{32} a^{10} + \frac{3}{8} a^{9} - \frac{5}{16} a^{8} + \frac{1}{4} a^{7} + \frac{19}{64} a^{6} - \frac{9}{32} a^{5} + \frac{5}{16} a^{4} - \frac{3}{8} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{128} a^{22} - \frac{1}{128} a^{21} - \frac{1}{128} a^{19} + \frac{1}{32} a^{18} - \frac{3}{64} a^{17} + \frac{3}{16} a^{16} - \frac{33}{128} a^{15} - \frac{3}{8} a^{14} + \frac{1}{64} a^{13} + \frac{5}{16} a^{12} + \frac{13}{64} a^{11} + \frac{3}{16} a^{10} - \frac{5}{32} a^{9} - \frac{3}{8} a^{8} + \frac{19}{128} a^{7} - \frac{9}{64} a^{6} - \frac{11}{32} a^{5} - \frac{3}{16} a^{4} + \frac{3}{8} a^{3} - \frac{1}{4} a^{2}$, $\frac{1}{256} a^{23} - \frac{1}{256} a^{22} - \frac{1}{256} a^{20} + \frac{1}{64} a^{19} - \frac{3}{128} a^{18} + \frac{3}{32} a^{17} - \frac{33}{256} a^{16} + \frac{5}{16} a^{15} - \frac{63}{128} a^{14} + \frac{5}{32} a^{13} + \frac{13}{128} a^{12} - \frac{13}{32} a^{11} + \frac{27}{64} a^{10} + \frac{5}{16} a^{9} - \frac{109}{256} a^{8} - \frac{9}{128} a^{7} - \frac{11}{64} a^{6} + \frac{13}{32} a^{5} - \frac{5}{16} a^{4} - \frac{1}{8} a^{3}$, $\frac{1}{512} a^{24} - \frac{1}{512} a^{23} - \frac{1}{512} a^{21} + \frac{1}{128} a^{20} - \frac{3}{256} a^{19} + \frac{3}{64} a^{18} - \frac{33}{512} a^{17} + \frac{5}{32} a^{16} - \frac{63}{256} a^{15} + \frac{5}{64} a^{14} - \frac{115}{256} a^{13} + \frac{19}{64} a^{12} - \frac{37}{128} a^{11} + \frac{5}{32} a^{10} - \frac{109}{512} a^{9} - \frac{9}{256} a^{8} - \frac{11}{128} a^{7} - \frac{19}{64} a^{6} - \frac{5}{32} a^{5} - \frac{1}{16} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{1024} a^{25} - \frac{1}{1024} a^{24} - \frac{1}{1024} a^{22} + \frac{1}{256} a^{21} - \frac{3}{512} a^{20} + \frac{3}{128} a^{19} - \frac{33}{1024} a^{18} + \frac{5}{64} a^{17} - \frac{63}{512} a^{16} - \frac{59}{128} a^{15} + \frac{141}{512} a^{14} - \frac{45}{128} a^{13} + \frac{91}{256} a^{12} + \frac{5}{64} a^{11} - \frac{109}{1024} a^{10} - \frac{9}{512} a^{9} - \frac{11}{256} a^{8} + \frac{45}{128} a^{7} - \frac{5}{64} a^{6} - \frac{1}{32} a^{5} + \frac{1}{4} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{2048} a^{26} - \frac{1}{2048} a^{25} - \frac{1}{2048} a^{23} + \frac{1}{512} a^{22} - \frac{3}{1024} a^{21} + \frac{3}{256} a^{20} - \frac{33}{2048} a^{19} + \frac{5}{128} a^{18} - \frac{63}{1024} a^{17} - \frac{59}{256} a^{16} + \frac{141}{1024} a^{15} + \frac{83}{256} a^{14} - \frac{165}{512} a^{13} + \frac{5}{128} a^{12} + \frac{915}{2048} a^{11} - \frac{9}{1024} a^{10} + \frac{245}{512} a^{9} + \frac{45}{256} a^{8} - \frac{5}{128} a^{7} + \frac{31}{64} a^{6} + \frac{1}{8} a^{5} - \frac{1}{4} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{4096} a^{27} - \frac{1}{4096} a^{26} - \frac{1}{4096} a^{24} + \frac{1}{1024} a^{23} - \frac{3}{2048} a^{22} + \frac{3}{512} a^{21} - \frac{33}{4096} a^{20} + \frac{5}{256} a^{19} - \frac{63}{2048} a^{18} - \frac{59}{512} a^{17} + \frac{141}{2048} a^{16} - \frac{173}{512} a^{15} + \frac{347}{1024} a^{14} + \frac{5}{256} a^{13} + \frac{915}{4096} a^{12} - \frac{9}{2048} a^{11} + \frac{245}{1024} a^{10} - \frac{211}{512} a^{9} + \frac{123}{256} a^{8} - \frac{33}{128} a^{7} - \frac{7}{16} a^{6} - \frac{1}{2} a^{5} - \frac{1}{8} a^{4} + \frac{1}{4} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{8192} a^{28} - \frac{1}{8192} a^{27} - \frac{1}{8192} a^{25} + \frac{1}{2048} a^{24} - \frac{3}{4096} a^{23} + \frac{3}{1024} a^{22} - \frac{33}{8192} a^{21} + \frac{5}{512} a^{20} - \frac{63}{4096} a^{19} - \frac{59}{1024} a^{18} + \frac{141}{4096} a^{17} - \frac{173}{1024} a^{16} + \frac{347}{2048} a^{15} + \frac{5}{512} a^{14} + \frac{915}{8192} a^{13} - \frac{9}{4096} a^{12} + \frac{245}{2048} a^{11} + \frac{301}{1024} a^{10} - \frac{133}{512} a^{9} - \frac{33}{256} a^{8} + \frac{9}{32} a^{7} + \frac{1}{4} a^{6} - \frac{1}{16} a^{5} + \frac{1}{8} a^{4} + \frac{1}{4} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{1301413606121861983433868572440137363347988877653225500736355693365645426688} a^{29} + \frac{41710703264102873858429635814922838164639611301146159663794391345078393}{1301413606121861983433868572440137363347988877653225500736355693365645426688} a^{28} + \frac{73985612661013081857180206168744559292072266218086462781468521015778795}{650706803060930991716934286220068681673994438826612750368177846682822713344} a^{27} + \frac{192998741549783602023927179466658322186195852996252719926062040918481495}{1301413606121861983433868572440137363347988877653225500736355693365645426688} a^{26} - \frac{104556429983768571264402406293600323233747215463987313023983986249827783}{650706803060930991716934286220068681673994438826612750368177846682822713344} a^{25} + \frac{379585519611124048565437659226600035211893532231309750792614632167163793}{650706803060930991716934286220068681673994438826612750368177846682822713344} a^{24} - \frac{482515579937847136165385334739507136661182524002481564242915569483373955}{325353401530465495858467143110034340836997219413306375184088923341411356672} a^{23} + \frac{528209111784868096900086649340337736529232982705366432956399242598103999}{1301413606121861983433868572440137363347988877653225500736355693365645426688} a^{22} - \frac{3028805328456836580369190082468429503171146658384343951480401098700219805}{650706803060930991716934286220068681673994438826612750368177846682822713344} a^{21} + \frac{2589568205746653745392698615311697459307977362604922253408596829414298745}{650706803060930991716934286220068681673994438826612750368177846682822713344} a^{20} + \frac{8941126033543303995776865070294169658467434680710858038608985346281010477}{325353401530465495858467143110034340836997219413306375184088923341411356672} a^{19} - \frac{4994521472568714633969721729526604621053045174545456034173352679241029731}{650706803060930991716934286220068681673994438826612750368177846682822713344} a^{18} - \frac{40343621500332440269938230044271210493140926620021911778095595695164943253}{325353401530465495858467143110034340836997219413306375184088923341411356672} a^{17} + \frac{16026001349793880309035503435516607330143782761991147539515700378438780551}{325353401530465495858467143110034340836997219413306375184088923341411356672} a^{16} - \frac{7833256449531911983137994939970982508771356418098934954735853608181288301}{162676700765232747929233571555017170418498609706653187592044461670705678336} a^{15} + \frac{634160874260471297942265386295827538833114716409928907033130746213042755923}{1301413606121861983433868572440137363347988877653225500736355693365645426688} a^{14} + \frac{17072855319967728378304966265374595684916480125125349107823454880416607079}{325353401530465495858467143110034340836997219413306375184088923341411356672} a^{13} - \frac{24612421699458167815817318583173757917554275908803132433445901441894299297}{81338350382616373964616785777508585209249304853326593796022230835352839168} a^{12} - \frac{7012622405090649023305655485713277249684746320484660922691120435784408615}{162676700765232747929233571555017170418498609706653187592044461670705678336} a^{11} - \frac{9927157004986643569565286489880106914089877851904819504054312286729293741}{40669175191308186982308392888754292604624652426663296898011115417676419584} a^{10} - \frac{10164549120147940036488570558346636699786794573242382521586396523384981723}{40669175191308186982308392888754292604624652426663296898011115417676419584} a^{9} + \frac{7337270312523632189541843309734369216833027184922395048413659010892569719}{20334587595654093491154196444377146302312326213331648449005557708838209792} a^{8} - \frac{1923815745635503724741994233677305834977407971752658065456274236610150877}{10167293797827046745577098222188573151156163106665824224502778854419104896} a^{7} + \frac{352340594825052931573968338159504045048692264613754384259186897861791775}{5083646898913523372788549111094286575578081553332912112251389427209552448} a^{6} + \frac{428873697037751707952280187780811454757070826150827629324365582848772533}{1270911724728380843197137277773571643894520388333228028062847356802388112} a^{5} + \frac{19427144791351616614034596257050913335593439959047835165459718173969593}{79431982795523802699821079860848227743407524270826751753927959800149257} a^{4} - \frac{253225504649895334573765745422294649962269592496004544060170447296971041}{635455862364190421598568638886785821947260194166614014031423678401194056} a^{3} - \frac{34626945229987982730903496428827950558376092353075952152767854970512017}{158863965591047605399642159721696455486815048541653503507855919600298514} a^{2} - \frac{34078481510317076286986004711839020654938825498131879379884638045490137}{79431982795523802699821079860848227743407524270826751753927959800149257} a + \frac{3458323823864030381813043317261021103689823697998308031562901786252788}{79431982795523802699821079860848227743407524270826751753927959800149257}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{98087}$, which has order $98087$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $14$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 4316173757.895952 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_{30}$ (as 30T1):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A cyclic group of order 30
The 30 conjugacy class representatives for $C_{30}$
Character table for $C_{30}$ is not computed

Intermediate fields

\(\Q(\sqrt{-7}) \), 3.3.961.1, 5.5.923521.1, 6.0.316767703.1, 10.0.14334539666270887.1, \(\Q(\zeta_{31})^+\)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.5.0.1}{5} }^{6}$ $30$ ${\href{/LocalNumberField/5.6.0.1}{6} }^{5}$ R $15^{2}$ $30$ $30$ $30$ ${\href{/LocalNumberField/23.5.0.1}{5} }^{6}$ ${\href{/LocalNumberField/29.5.0.1}{5} }^{6}$ R ${\href{/LocalNumberField/37.3.0.1}{3} }^{10}$ $30$ $15^{2}$ ${\href{/LocalNumberField/47.10.0.1}{10} }^{3}$ $15^{2}$ $30$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
7Data not computed
31Data not computed