Properties

Label 30.0.252...079.1
Degree $30$
Signature $[0, 15]$
Discriminant $-2.523\times 10^{56}$
Root discriminant \(75.87\)
Ramified primes $3,7,11$
Class number $956736$ (GRH)
Class group [2, 2, 2, 2, 2, 29898] (GRH)
Galois group $C_{30}$ (as 30T1)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^30 - x^29 + 47*x^28 - 48*x^27 + 944*x^26 - 993*x^25 + 10687*x^24 - 11729*x^23 + 76154*x^22 - 88925*x^21 + 366388*x^20 - 468468*x^19 + 1294545*x^18 - 1888754*x^17 + 3897814*x^16 - 6566292*x^15 + 11930723*x^14 - 20080376*x^13 + 37185318*x^12 - 47602046*x^11 + 102379331*x^10 - 79703953*x^9 + 234755530*x^8 - 89460368*x^7 + 475554491*x^6 - 73175697*x^5 + 799313122*x^4 - 123217303*x^3 + 950484078*x^2 - 224979702*x + 533593369)
 
gp: K = bnfinit(y^30 - y^29 + 47*y^28 - 48*y^27 + 944*y^26 - 993*y^25 + 10687*y^24 - 11729*y^23 + 76154*y^22 - 88925*y^21 + 366388*y^20 - 468468*y^19 + 1294545*y^18 - 1888754*y^17 + 3897814*y^16 - 6566292*y^15 + 11930723*y^14 - 20080376*y^13 + 37185318*y^12 - 47602046*y^11 + 102379331*y^10 - 79703953*y^9 + 234755530*y^8 - 89460368*y^7 + 475554491*y^6 - 73175697*y^5 + 799313122*y^4 - 123217303*y^3 + 950484078*y^2 - 224979702*y + 533593369, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^30 - x^29 + 47*x^28 - 48*x^27 + 944*x^26 - 993*x^25 + 10687*x^24 - 11729*x^23 + 76154*x^22 - 88925*x^21 + 366388*x^20 - 468468*x^19 + 1294545*x^18 - 1888754*x^17 + 3897814*x^16 - 6566292*x^15 + 11930723*x^14 - 20080376*x^13 + 37185318*x^12 - 47602046*x^11 + 102379331*x^10 - 79703953*x^9 + 234755530*x^8 - 89460368*x^7 + 475554491*x^6 - 73175697*x^5 + 799313122*x^4 - 123217303*x^3 + 950484078*x^2 - 224979702*x + 533593369);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^30 - x^29 + 47*x^28 - 48*x^27 + 944*x^26 - 993*x^25 + 10687*x^24 - 11729*x^23 + 76154*x^22 - 88925*x^21 + 366388*x^20 - 468468*x^19 + 1294545*x^18 - 1888754*x^17 + 3897814*x^16 - 6566292*x^15 + 11930723*x^14 - 20080376*x^13 + 37185318*x^12 - 47602046*x^11 + 102379331*x^10 - 79703953*x^9 + 234755530*x^8 - 89460368*x^7 + 475554491*x^6 - 73175697*x^5 + 799313122*x^4 - 123217303*x^3 + 950484078*x^2 - 224979702*x + 533593369)
 

\( x^{30} - x^{29} + 47 x^{28} - 48 x^{27} + 944 x^{26} - 993 x^{25} + 10687 x^{24} - 11729 x^{23} + \cdots + 533593369 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $30$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 15]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(-252273899561549903518384292359448695620714577809320549079\) \(\medspace = -\,3^{15}\cdot 7^{25}\cdot 11^{27}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(75.87\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $3^{1/2}7^{5/6}11^{9/10}\approx 75.8686594937973$
Ramified primes:   \(3\), \(7\), \(11\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{-231}) \)
$\card{ \Gal(K/\Q) }$:  $30$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is Galois and abelian over $\Q$.
Conductor:  \(231=3\cdot 7\cdot 11\)
Dirichlet character group:    $\lbrace$$\chi_{231}(64,·)$, $\chi_{231}(1,·)$, $\chi_{231}(130,·)$, $\chi_{231}(131,·)$, $\chi_{231}(4,·)$, $\chi_{231}(68,·)$, $\chi_{231}(194,·)$, $\chi_{231}(206,·)$, $\chi_{231}(16,·)$, $\chi_{231}(17,·)$, $\chi_{231}(67,·)$, $\chi_{231}(148,·)$, $\chi_{231}(227,·)$, $\chi_{231}(214,·)$, $\chi_{231}(215,·)$, $\chi_{231}(25,·)$, $\chi_{231}(101,·)$, $\chi_{231}(100,·)$, $\chi_{231}(163,·)$, $\chi_{231}(164,·)$, $\chi_{231}(37,·)$, $\chi_{231}(230,·)$, $\chi_{231}(167,·)$, $\chi_{231}(41,·)$, $\chi_{231}(173,·)$, $\chi_{231}(83,·)$, $\chi_{231}(190,·)$, $\chi_{231}(169,·)$, $\chi_{231}(58,·)$, $\chi_{231}(62,·)$$\rbrace$
This is a CM field.
Reflex fields:  unavailable$^{16384}$

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $\frac{1}{43258643}a^{26}+\frac{402895}{43258643}a^{25}-\frac{17486816}{43258643}a^{24}-\frac{5386889}{43258643}a^{23}+\frac{13362742}{43258643}a^{22}-\frac{10277170}{43258643}a^{21}+\frac{2826428}{43258643}a^{20}-\frac{5267970}{43258643}a^{19}+\frac{19389099}{43258643}a^{18}-\frac{12751913}{43258643}a^{17}+\frac{8944771}{43258643}a^{16}+\frac{2040139}{43258643}a^{15}+\frac{8054836}{43258643}a^{14}+\frac{13225595}{43258643}a^{13}-\frac{9836040}{43258643}a^{12}+\frac{6625165}{43258643}a^{11}+\frac{136001}{43258643}a^{10}-\frac{13449709}{43258643}a^{9}-\frac{21066014}{43258643}a^{8}+\frac{505162}{43258643}a^{7}-\frac{11987940}{43258643}a^{6}+\frac{19433714}{43258643}a^{5}+\frac{15221665}{43258643}a^{4}-\frac{16705949}{43258643}a^{3}+\frac{17647747}{43258643}a^{2}-\frac{18084927}{43258643}a+\frac{16381897}{43258643}$, $\frac{1}{43258643}a^{27}+\frac{7819338}{43258643}a^{25}-\frac{16805407}{43258643}a^{24}-\frac{8630199}{43258643}a^{23}+\frac{5457948}{43258643}a^{22}-\frac{7557096}{43258643}a^{21}-\frac{18458698}{43258643}a^{20}+\frac{16102097}{43258643}a^{19}-\frac{8264649}{43258643}a^{18}-\frac{8320275}{43258643}a^{17}-\frac{10440862}{43258643}a^{16}+\frac{3728074}{43258643}a^{15}-\frac{19785408}{43258643}a^{14}+\frac{20452532}{43258643}a^{13}+\frac{16934378}{43258643}a^{12}-\frac{14409002}{43258643}a^{11}+\frac{1128077}{43258643}a^{10}+\frac{5526146}{43258643}a^{9}+\frac{3200449}{43258643}a^{8}-\frac{7316615}{43258643}a^{7}-\frac{13488222}{43258643}a^{6}-\frac{3114651}{43258643}a^{5}-\frac{14866657}{43258643}a^{4}+\frac{18929803}{43258643}a^{3}-\frac{255797}{43258643}a^{2}-\frac{13005429}{43258643}a+\frac{3063910}{43258643}$, $\frac{1}{41\!\cdots\!99}a^{28}-\frac{1175000021}{41\!\cdots\!99}a^{27}-\frac{2726930966}{41\!\cdots\!99}a^{26}-\frac{16\!\cdots\!80}{41\!\cdots\!99}a^{25}-\frac{19\!\cdots\!05}{41\!\cdots\!99}a^{24}+\frac{11\!\cdots\!33}{41\!\cdots\!99}a^{23}-\frac{25\!\cdots\!23}{41\!\cdots\!99}a^{22}+\frac{17\!\cdots\!41}{41\!\cdots\!99}a^{21}-\frac{17\!\cdots\!71}{41\!\cdots\!99}a^{20}+\frac{18\!\cdots\!14}{41\!\cdots\!99}a^{19}-\frac{17\!\cdots\!80}{41\!\cdots\!99}a^{18}+\frac{13\!\cdots\!74}{41\!\cdots\!99}a^{17}-\frac{40\!\cdots\!81}{41\!\cdots\!99}a^{16}+\frac{10\!\cdots\!61}{41\!\cdots\!99}a^{15}+\frac{65\!\cdots\!18}{41\!\cdots\!99}a^{14}+\frac{13\!\cdots\!36}{41\!\cdots\!99}a^{13}-\frac{12\!\cdots\!59}{41\!\cdots\!99}a^{12}-\frac{12\!\cdots\!32}{41\!\cdots\!99}a^{11}-\frac{26\!\cdots\!28}{41\!\cdots\!99}a^{10}-\frac{18\!\cdots\!72}{41\!\cdots\!99}a^{9}+\frac{18\!\cdots\!15}{41\!\cdots\!99}a^{8}+\frac{54\!\cdots\!84}{41\!\cdots\!99}a^{7}+\frac{16\!\cdots\!05}{41\!\cdots\!99}a^{6}+\frac{13\!\cdots\!97}{41\!\cdots\!99}a^{5}+\frac{33\!\cdots\!34}{41\!\cdots\!99}a^{4}-\frac{82\!\cdots\!40}{41\!\cdots\!99}a^{3}+\frac{11\!\cdots\!63}{41\!\cdots\!99}a^{2}+\frac{18\!\cdots\!69}{41\!\cdots\!99}a+\frac{16\!\cdots\!87}{41\!\cdots\!99}$, $\frac{1}{12\!\cdots\!59}a^{29}+\frac{19\!\cdots\!27}{12\!\cdots\!59}a^{28}-\frac{36\!\cdots\!23}{12\!\cdots\!59}a^{27}-\frac{25\!\cdots\!83}{12\!\cdots\!59}a^{26}-\frac{39\!\cdots\!09}{12\!\cdots\!59}a^{25}-\frac{36\!\cdots\!21}{12\!\cdots\!59}a^{24}+\frac{54\!\cdots\!88}{12\!\cdots\!59}a^{23}-\frac{73\!\cdots\!50}{12\!\cdots\!59}a^{22}-\frac{26\!\cdots\!28}{12\!\cdots\!59}a^{21}-\frac{38\!\cdots\!12}{12\!\cdots\!59}a^{20}-\frac{23\!\cdots\!59}{12\!\cdots\!59}a^{19}+\frac{45\!\cdots\!05}{12\!\cdots\!59}a^{18}-\frac{28\!\cdots\!13}{12\!\cdots\!59}a^{17}-\frac{40\!\cdots\!97}{12\!\cdots\!59}a^{16}-\frac{17\!\cdots\!11}{12\!\cdots\!59}a^{15}-\frac{22\!\cdots\!01}{12\!\cdots\!59}a^{14}+\frac{32\!\cdots\!34}{12\!\cdots\!59}a^{13}-\frac{74\!\cdots\!27}{12\!\cdots\!59}a^{12}-\frac{41\!\cdots\!27}{12\!\cdots\!59}a^{11}-\frac{23\!\cdots\!31}{29\!\cdots\!61}a^{10}+\frac{61\!\cdots\!21}{12\!\cdots\!59}a^{9}-\frac{83\!\cdots\!19}{12\!\cdots\!59}a^{8}-\frac{18\!\cdots\!48}{12\!\cdots\!59}a^{7}-\frac{15\!\cdots\!65}{40\!\cdots\!37}a^{6}-\frac{18\!\cdots\!79}{12\!\cdots\!59}a^{5}-\frac{15\!\cdots\!81}{12\!\cdots\!59}a^{4}+\frac{39\!\cdots\!70}{12\!\cdots\!59}a^{3}+\frac{40\!\cdots\!09}{12\!\cdots\!59}a^{2}-\frac{61\!\cdots\!81}{12\!\cdots\!59}a+\frac{18\!\cdots\!77}{23\!\cdots\!11}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

$C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{29898}$, which has order $956736$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $14$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{26\!\cdots\!77}{28\!\cdots\!13}a^{29}-\frac{58\!\cdots\!72}{28\!\cdots\!13}a^{28}+\frac{12\!\cdots\!51}{28\!\cdots\!13}a^{27}-\frac{36\!\cdots\!79}{28\!\cdots\!13}a^{26}+\frac{22\!\cdots\!54}{28\!\cdots\!13}a^{25}-\frac{94\!\cdots\!69}{28\!\cdots\!13}a^{24}+\frac{24\!\cdots\!90}{28\!\cdots\!13}a^{23}-\frac{13\!\cdots\!42}{28\!\cdots\!13}a^{22}+\frac{15\!\cdots\!84}{28\!\cdots\!13}a^{21}-\frac{12\!\cdots\!94}{28\!\cdots\!13}a^{20}+\frac{67\!\cdots\!62}{28\!\cdots\!13}a^{19}-\frac{72\!\cdots\!22}{28\!\cdots\!13}a^{18}+\frac{21\!\cdots\!23}{28\!\cdots\!13}a^{17}-\frac{30\!\cdots\!88}{28\!\cdots\!13}a^{16}+\frac{58\!\cdots\!56}{28\!\cdots\!13}a^{15}-\frac{10\!\cdots\!01}{28\!\cdots\!13}a^{14}+\frac{18\!\cdots\!81}{28\!\cdots\!13}a^{13}-\frac{30\!\cdots\!97}{28\!\cdots\!13}a^{12}+\frac{60\!\cdots\!79}{28\!\cdots\!13}a^{11}-\frac{57\!\cdots\!32}{28\!\cdots\!13}a^{10}+\frac{17\!\cdots\!04}{28\!\cdots\!13}a^{9}-\frac{63\!\cdots\!57}{28\!\cdots\!13}a^{8}+\frac{38\!\cdots\!13}{28\!\cdots\!13}a^{7}-\frac{21\!\cdots\!88}{93\!\cdots\!59}a^{6}+\frac{76\!\cdots\!62}{28\!\cdots\!13}a^{5}+\frac{54\!\cdots\!19}{28\!\cdots\!13}a^{4}+\frac{10\!\cdots\!38}{28\!\cdots\!13}a^{3}-\frac{27\!\cdots\!32}{28\!\cdots\!13}a^{2}+\frac{84\!\cdots\!80}{28\!\cdots\!13}a-\frac{48\!\cdots\!47}{53\!\cdots\!77}$, $\frac{26\!\cdots\!77}{28\!\cdots\!13}a^{29}-\frac{58\!\cdots\!72}{28\!\cdots\!13}a^{28}+\frac{12\!\cdots\!51}{28\!\cdots\!13}a^{27}-\frac{36\!\cdots\!79}{28\!\cdots\!13}a^{26}+\frac{22\!\cdots\!54}{28\!\cdots\!13}a^{25}-\frac{94\!\cdots\!69}{28\!\cdots\!13}a^{24}+\frac{24\!\cdots\!90}{28\!\cdots\!13}a^{23}-\frac{13\!\cdots\!42}{28\!\cdots\!13}a^{22}+\frac{15\!\cdots\!84}{28\!\cdots\!13}a^{21}-\frac{12\!\cdots\!94}{28\!\cdots\!13}a^{20}+\frac{67\!\cdots\!62}{28\!\cdots\!13}a^{19}-\frac{72\!\cdots\!22}{28\!\cdots\!13}a^{18}+\frac{21\!\cdots\!23}{28\!\cdots\!13}a^{17}-\frac{30\!\cdots\!88}{28\!\cdots\!13}a^{16}+\frac{58\!\cdots\!56}{28\!\cdots\!13}a^{15}-\frac{10\!\cdots\!01}{28\!\cdots\!13}a^{14}+\frac{18\!\cdots\!81}{28\!\cdots\!13}a^{13}-\frac{30\!\cdots\!97}{28\!\cdots\!13}a^{12}+\frac{60\!\cdots\!79}{28\!\cdots\!13}a^{11}-\frac{57\!\cdots\!32}{28\!\cdots\!13}a^{10}+\frac{17\!\cdots\!04}{28\!\cdots\!13}a^{9}-\frac{63\!\cdots\!57}{28\!\cdots\!13}a^{8}+\frac{38\!\cdots\!13}{28\!\cdots\!13}a^{7}-\frac{21\!\cdots\!88}{93\!\cdots\!59}a^{6}+\frac{76\!\cdots\!62}{28\!\cdots\!13}a^{5}+\frac{54\!\cdots\!19}{28\!\cdots\!13}a^{4}+\frac{10\!\cdots\!38}{28\!\cdots\!13}a^{3}-\frac{27\!\cdots\!32}{28\!\cdots\!13}a^{2}+\frac{84\!\cdots\!80}{28\!\cdots\!13}a-\frac{10\!\cdots\!24}{53\!\cdots\!77}$, $\frac{41\!\cdots\!69}{60\!\cdots\!69}a^{29}-\frac{65\!\cdots\!07}{60\!\cdots\!69}a^{28}+\frac{19\!\cdots\!03}{60\!\cdots\!69}a^{27}-\frac{30\!\cdots\!59}{60\!\cdots\!69}a^{26}+\frac{38\!\cdots\!59}{60\!\cdots\!69}a^{25}-\frac{60\!\cdots\!45}{60\!\cdots\!69}a^{24}+\frac{43\!\cdots\!92}{60\!\cdots\!69}a^{23}-\frac{68\!\cdots\!57}{60\!\cdots\!69}a^{22}+\frac{30\!\cdots\!99}{60\!\cdots\!69}a^{21}-\frac{47\!\cdots\!62}{60\!\cdots\!69}a^{20}+\frac{14\!\cdots\!14}{60\!\cdots\!69}a^{19}-\frac{22\!\cdots\!04}{60\!\cdots\!69}a^{18}+\frac{47\!\cdots\!18}{60\!\cdots\!69}a^{17}-\frac{82\!\cdots\!93}{60\!\cdots\!69}a^{16}+\frac{14\!\cdots\!71}{60\!\cdots\!69}a^{15}-\frac{26\!\cdots\!88}{60\!\cdots\!69}a^{14}+\frac{46\!\cdots\!13}{60\!\cdots\!69}a^{13}-\frac{77\!\cdots\!47}{60\!\cdots\!69}a^{12}+\frac{14\!\cdots\!96}{60\!\cdots\!69}a^{11}-\frac{18\!\cdots\!95}{60\!\cdots\!69}a^{10}+\frac{77\!\cdots\!17}{13\!\cdots\!63}a^{9}-\frac{32\!\cdots\!38}{60\!\cdots\!69}a^{8}+\frac{69\!\cdots\!36}{60\!\cdots\!69}a^{7}-\frac{15\!\cdots\!99}{19\!\cdots\!67}a^{6}+\frac{11\!\cdots\!06}{60\!\cdots\!69}a^{5}-\frac{78\!\cdots\!92}{60\!\cdots\!69}a^{4}+\frac{17\!\cdots\!82}{60\!\cdots\!69}a^{3}-\frac{16\!\cdots\!49}{60\!\cdots\!69}a^{2}+\frac{16\!\cdots\!72}{60\!\cdots\!69}a-\frac{36\!\cdots\!79}{11\!\cdots\!01}$, $\frac{19\!\cdots\!32}{60\!\cdots\!69}a^{29}+\frac{45\!\cdots\!29}{60\!\cdots\!69}a^{28}+\frac{87\!\cdots\!13}{60\!\cdots\!69}a^{27}+\frac{13\!\cdots\!07}{60\!\cdots\!69}a^{26}+\frac{16\!\cdots\!12}{60\!\cdots\!69}a^{25}+\frac{59\!\cdots\!45}{60\!\cdots\!69}a^{24}+\frac{17\!\cdots\!12}{60\!\cdots\!69}a^{23}-\frac{23\!\cdots\!64}{60\!\cdots\!69}a^{22}+\frac{11\!\cdots\!28}{60\!\cdots\!69}a^{21}-\frac{43\!\cdots\!08}{60\!\cdots\!69}a^{20}+\frac{49\!\cdots\!02}{60\!\cdots\!69}a^{19}-\frac{35\!\cdots\!23}{60\!\cdots\!69}a^{18}+\frac{14\!\cdots\!02}{60\!\cdots\!69}a^{17}-\frac{18\!\cdots\!51}{60\!\cdots\!69}a^{16}+\frac{37\!\cdots\!38}{60\!\cdots\!69}a^{15}-\frac{70\!\cdots\!02}{60\!\cdots\!69}a^{14}+\frac{11\!\cdots\!06}{60\!\cdots\!69}a^{13}-\frac{19\!\cdots\!17}{60\!\cdots\!69}a^{12}+\frac{39\!\cdots\!25}{60\!\cdots\!69}a^{11}-\frac{30\!\cdots\!52}{60\!\cdots\!69}a^{10}+\frac{12\!\cdots\!74}{60\!\cdots\!69}a^{9}-\frac{34\!\cdots\!07}{60\!\cdots\!69}a^{8}+\frac{30\!\cdots\!76}{60\!\cdots\!69}a^{7}+\frac{31\!\cdots\!86}{19\!\cdots\!67}a^{6}+\frac{59\!\cdots\!38}{60\!\cdots\!69}a^{5}+\frac{18\!\cdots\!45}{60\!\cdots\!69}a^{4}+\frac{82\!\cdots\!46}{60\!\cdots\!69}a^{3}-\frac{73\!\cdots\!97}{60\!\cdots\!69}a^{2}+\frac{61\!\cdots\!03}{60\!\cdots\!69}a-\frac{61\!\cdots\!85}{11\!\cdots\!01}$, $\frac{28\!\cdots\!80}{60\!\cdots\!69}a^{29}-\frac{23\!\cdots\!76}{60\!\cdots\!69}a^{28}+\frac{12\!\cdots\!45}{60\!\cdots\!69}a^{27}-\frac{10\!\cdots\!53}{60\!\cdots\!69}a^{26}+\frac{23\!\cdots\!14}{60\!\cdots\!69}a^{25}-\frac{19\!\cdots\!56}{60\!\cdots\!69}a^{24}+\frac{24\!\cdots\!17}{60\!\cdots\!69}a^{23}-\frac{20\!\cdots\!47}{60\!\cdots\!69}a^{22}+\frac{14\!\cdots\!96}{60\!\cdots\!69}a^{21}-\frac{13\!\cdots\!83}{60\!\cdots\!69}a^{20}+\frac{57\!\cdots\!12}{60\!\cdots\!69}a^{19}-\frac{62\!\cdots\!98}{60\!\cdots\!69}a^{18}+\frac{16\!\cdots\!79}{60\!\cdots\!69}a^{17}-\frac{23\!\cdots\!38}{60\!\cdots\!69}a^{16}+\frac{44\!\cdots\!29}{60\!\cdots\!69}a^{15}-\frac{79\!\cdots\!65}{60\!\cdots\!69}a^{14}+\frac{14\!\cdots\!93}{60\!\cdots\!69}a^{13}-\frac{21\!\cdots\!28}{60\!\cdots\!69}a^{12}+\frac{43\!\cdots\!14}{60\!\cdots\!69}a^{11}-\frac{30\!\cdots\!13}{60\!\cdots\!69}a^{10}+\frac{10\!\cdots\!08}{60\!\cdots\!69}a^{9}-\frac{86\!\cdots\!92}{60\!\cdots\!69}a^{8}+\frac{24\!\cdots\!68}{60\!\cdots\!69}a^{7}+\frac{15\!\cdots\!57}{19\!\cdots\!67}a^{6}+\frac{52\!\cdots\!13}{60\!\cdots\!69}a^{5}+\frac{19\!\cdots\!12}{60\!\cdots\!69}a^{4}+\frac{66\!\cdots\!69}{60\!\cdots\!69}a^{3}+\frac{14\!\cdots\!54}{60\!\cdots\!69}a^{2}+\frac{42\!\cdots\!97}{60\!\cdots\!69}a+\frac{65\!\cdots\!66}{11\!\cdots\!01}$, $\frac{28\!\cdots\!80}{60\!\cdots\!69}a^{29}-\frac{23\!\cdots\!76}{60\!\cdots\!69}a^{28}+\frac{12\!\cdots\!45}{60\!\cdots\!69}a^{27}-\frac{10\!\cdots\!53}{60\!\cdots\!69}a^{26}+\frac{23\!\cdots\!14}{60\!\cdots\!69}a^{25}-\frac{19\!\cdots\!56}{60\!\cdots\!69}a^{24}+\frac{24\!\cdots\!17}{60\!\cdots\!69}a^{23}-\frac{20\!\cdots\!47}{60\!\cdots\!69}a^{22}+\frac{14\!\cdots\!96}{60\!\cdots\!69}a^{21}-\frac{13\!\cdots\!83}{60\!\cdots\!69}a^{20}+\frac{57\!\cdots\!12}{60\!\cdots\!69}a^{19}-\frac{62\!\cdots\!98}{60\!\cdots\!69}a^{18}+\frac{16\!\cdots\!79}{60\!\cdots\!69}a^{17}-\frac{23\!\cdots\!38}{60\!\cdots\!69}a^{16}+\frac{44\!\cdots\!29}{60\!\cdots\!69}a^{15}-\frac{79\!\cdots\!65}{60\!\cdots\!69}a^{14}+\frac{14\!\cdots\!93}{60\!\cdots\!69}a^{13}-\frac{21\!\cdots\!28}{60\!\cdots\!69}a^{12}+\frac{43\!\cdots\!14}{60\!\cdots\!69}a^{11}-\frac{30\!\cdots\!13}{60\!\cdots\!69}a^{10}+\frac{10\!\cdots\!08}{60\!\cdots\!69}a^{9}-\frac{86\!\cdots\!92}{60\!\cdots\!69}a^{8}+\frac{24\!\cdots\!68}{60\!\cdots\!69}a^{7}+\frac{15\!\cdots\!57}{19\!\cdots\!67}a^{6}+\frac{52\!\cdots\!13}{60\!\cdots\!69}a^{5}+\frac{19\!\cdots\!12}{60\!\cdots\!69}a^{4}+\frac{66\!\cdots\!69}{60\!\cdots\!69}a^{3}+\frac{14\!\cdots\!54}{60\!\cdots\!69}a^{2}+\frac{42\!\cdots\!97}{60\!\cdots\!69}a-\frac{47\!\cdots\!35}{11\!\cdots\!01}$, $\frac{17\!\cdots\!91}{12\!\cdots\!59}a^{29}-\frac{73\!\cdots\!32}{12\!\cdots\!59}a^{28}+\frac{78\!\cdots\!88}{12\!\cdots\!59}a^{27}-\frac{37\!\cdots\!80}{12\!\cdots\!59}a^{26}+\frac{14\!\cdots\!76}{12\!\cdots\!59}a^{25}-\frac{81\!\cdots\!83}{12\!\cdots\!59}a^{24}+\frac{15\!\cdots\!57}{12\!\cdots\!59}a^{23}-\frac{10\!\cdots\!23}{12\!\cdots\!59}a^{22}+\frac{98\!\cdots\!68}{12\!\cdots\!59}a^{21}-\frac{81\!\cdots\!55}{12\!\cdots\!59}a^{20}+\frac{41\!\cdots\!98}{12\!\cdots\!59}a^{19}-\frac{44\!\cdots\!24}{12\!\cdots\!59}a^{18}+\frac{12\!\cdots\!58}{12\!\cdots\!59}a^{17}-\frac{18\!\cdots\!02}{12\!\cdots\!59}a^{16}+\frac{34\!\cdots\!27}{12\!\cdots\!59}a^{15}-\frac{62\!\cdots\!58}{12\!\cdots\!59}a^{14}+\frac{10\!\cdots\!06}{12\!\cdots\!59}a^{13}-\frac{17\!\cdots\!79}{12\!\cdots\!59}a^{12}+\frac{35\!\cdots\!51}{12\!\cdots\!59}a^{11}-\frac{31\!\cdots\!19}{12\!\cdots\!59}a^{10}+\frac{97\!\cdots\!60}{12\!\cdots\!59}a^{9}-\frac{29\!\cdots\!63}{12\!\cdots\!59}a^{8}+\frac{21\!\cdots\!07}{12\!\cdots\!59}a^{7}+\frac{23\!\cdots\!43}{40\!\cdots\!37}a^{6}+\frac{43\!\cdots\!09}{12\!\cdots\!59}a^{5}+\frac{63\!\cdots\!49}{12\!\cdots\!59}a^{4}+\frac{61\!\cdots\!93}{12\!\cdots\!59}a^{3}-\frac{90\!\cdots\!82}{12\!\cdots\!59}a^{2}+\frac{45\!\cdots\!07}{12\!\cdots\!59}a-\frac{30\!\cdots\!06}{23\!\cdots\!11}$, $\frac{97\!\cdots\!03}{12\!\cdots\!59}a^{29}-\frac{32\!\cdots\!68}{12\!\cdots\!59}a^{28}+\frac{43\!\cdots\!42}{12\!\cdots\!59}a^{27}-\frac{12\!\cdots\!33}{12\!\cdots\!59}a^{26}+\frac{76\!\cdots\!49}{12\!\cdots\!59}a^{25}-\frac{20\!\cdots\!44}{12\!\cdots\!59}a^{24}+\frac{67\!\cdots\!99}{12\!\cdots\!59}a^{23}-\frac{17\!\cdots\!55}{12\!\cdots\!59}a^{22}+\frac{28\!\cdots\!45}{12\!\cdots\!59}a^{21}-\frac{75\!\cdots\!15}{12\!\cdots\!59}a^{20}+\frac{31\!\cdots\!08}{12\!\cdots\!59}a^{19}-\frac{16\!\cdots\!84}{12\!\cdots\!59}a^{18}-\frac{11\!\cdots\!40}{12\!\cdots\!59}a^{17}-\frac{23\!\cdots\!47}{12\!\cdots\!59}a^{16}+\frac{39\!\cdots\!36}{12\!\cdots\!59}a^{15}-\frac{93\!\cdots\!67}{12\!\cdots\!59}a^{14}+\frac{44\!\cdots\!10}{12\!\cdots\!59}a^{13}-\frac{20\!\cdots\!14}{12\!\cdots\!59}a^{12}+\frac{29\!\cdots\!49}{12\!\cdots\!59}a^{11}+\frac{59\!\cdots\!27}{12\!\cdots\!59}a^{10}-\frac{33\!\cdots\!11}{12\!\cdots\!59}a^{9}-\frac{26\!\cdots\!09}{12\!\cdots\!59}a^{8}-\frac{32\!\cdots\!20}{12\!\cdots\!59}a^{7}-\frac{43\!\cdots\!66}{40\!\cdots\!37}a^{6}-\frac{30\!\cdots\!63}{12\!\cdots\!59}a^{5}-\frac{14\!\cdots\!59}{12\!\cdots\!59}a^{4}-\frac{27\!\cdots\!81}{12\!\cdots\!59}a^{3}+\frac{32\!\cdots\!62}{12\!\cdots\!59}a^{2}-\frac{44\!\cdots\!88}{12\!\cdots\!59}a-\frac{31\!\cdots\!66}{23\!\cdots\!11}$, $\frac{20\!\cdots\!70}{12\!\cdots\!59}a^{29}-\frac{15\!\cdots\!73}{12\!\cdots\!59}a^{28}+\frac{92\!\cdots\!26}{12\!\cdots\!59}a^{27}-\frac{78\!\cdots\!46}{12\!\cdots\!59}a^{26}+\frac{17\!\cdots\!71}{12\!\cdots\!59}a^{25}-\frac{16\!\cdots\!62}{12\!\cdots\!59}a^{24}+\frac{19\!\cdots\!82}{12\!\cdots\!59}a^{23}-\frac{19\!\cdots\!33}{12\!\cdots\!59}a^{22}+\frac{13\!\cdots\!01}{12\!\cdots\!59}a^{21}-\frac{15\!\cdots\!24}{12\!\cdots\!59}a^{20}+\frac{58\!\cdots\!20}{12\!\cdots\!59}a^{19}-\frac{78\!\cdots\!90}{12\!\cdots\!59}a^{18}+\frac{19\!\cdots\!87}{12\!\cdots\!59}a^{17}-\frac{30\!\cdots\!07}{12\!\cdots\!59}a^{16}+\frac{55\!\cdots\!89}{12\!\cdots\!59}a^{15}-\frac{10\!\cdots\!11}{12\!\cdots\!59}a^{14}+\frac{17\!\cdots\!26}{12\!\cdots\!59}a^{13}-\frac{29\!\cdots\!88}{12\!\cdots\!59}a^{12}+\frac{55\!\cdots\!53}{12\!\cdots\!59}a^{11}-\frac{63\!\cdots\!21}{12\!\cdots\!59}a^{10}+\frac{14\!\cdots\!53}{12\!\cdots\!59}a^{9}-\frac{94\!\cdots\!69}{12\!\cdots\!59}a^{8}+\frac{31\!\cdots\!55}{12\!\cdots\!59}a^{7}-\frac{32\!\cdots\!73}{40\!\cdots\!37}a^{6}+\frac{57\!\cdots\!32}{12\!\cdots\!59}a^{5}-\frac{13\!\cdots\!95}{12\!\cdots\!59}a^{4}+\frac{84\!\cdots\!36}{12\!\cdots\!59}a^{3}-\frac{45\!\cdots\!15}{12\!\cdots\!59}a^{2}+\frac{69\!\cdots\!32}{12\!\cdots\!59}a-\frac{12\!\cdots\!01}{23\!\cdots\!11}$, $\frac{37\!\cdots\!09}{12\!\cdots\!59}a^{29}-\frac{40\!\cdots\!81}{12\!\cdots\!59}a^{28}+\frac{16\!\cdots\!64}{12\!\cdots\!59}a^{27}-\frac{17\!\cdots\!74}{12\!\cdots\!59}a^{26}+\frac{31\!\cdots\!18}{12\!\cdots\!59}a^{25}-\frac{31\!\cdots\!29}{12\!\cdots\!59}a^{24}+\frac{32\!\cdots\!98}{12\!\cdots\!59}a^{23}-\frac{31\!\cdots\!17}{12\!\cdots\!59}a^{22}+\frac{20\!\cdots\!98}{12\!\cdots\!59}a^{21}-\frac{20\!\cdots\!96}{12\!\cdots\!59}a^{20}+\frac{83\!\cdots\!92}{12\!\cdots\!59}a^{19}-\frac{10\!\cdots\!89}{12\!\cdots\!59}a^{18}+\frac{28\!\cdots\!27}{12\!\cdots\!59}a^{17}-\frac{50\!\cdots\!68}{12\!\cdots\!59}a^{16}+\frac{10\!\cdots\!30}{12\!\cdots\!59}a^{15}-\frac{20\!\cdots\!35}{12\!\cdots\!59}a^{14}+\frac{36\!\cdots\!11}{12\!\cdots\!59}a^{13}-\frac{58\!\cdots\!05}{12\!\cdots\!59}a^{12}+\frac{10\!\cdots\!10}{12\!\cdots\!59}a^{11}-\frac{11\!\cdots\!96}{12\!\cdots\!59}a^{10}+\frac{26\!\cdots\!19}{12\!\cdots\!59}a^{9}-\frac{23\!\cdots\!08}{12\!\cdots\!59}a^{8}+\frac{72\!\cdots\!11}{12\!\cdots\!59}a^{7}-\frac{19\!\cdots\!03}{40\!\cdots\!37}a^{6}+\frac{15\!\cdots\!96}{12\!\cdots\!59}a^{5}-\frac{82\!\cdots\!18}{12\!\cdots\!59}a^{4}+\frac{16\!\cdots\!21}{12\!\cdots\!59}a^{3}-\frac{50\!\cdots\!17}{12\!\cdots\!59}a^{2}+\frac{73\!\cdots\!20}{12\!\cdots\!59}a-\frac{39\!\cdots\!77}{23\!\cdots\!11}$, $\frac{64\!\cdots\!33}{12\!\cdots\!59}a^{29}+\frac{44\!\cdots\!49}{12\!\cdots\!59}a^{28}+\frac{27\!\cdots\!39}{12\!\cdots\!59}a^{27}+\frac{18\!\cdots\!58}{12\!\cdots\!59}a^{26}+\frac{48\!\cdots\!86}{12\!\cdots\!59}a^{25}+\frac{29\!\cdots\!66}{12\!\cdots\!59}a^{24}+\frac{46\!\cdots\!54}{12\!\cdots\!59}a^{23}+\frac{24\!\cdots\!28}{12\!\cdots\!59}a^{22}+\frac{25\!\cdots\!93}{12\!\cdots\!59}a^{21}+\frac{10\!\cdots\!25}{12\!\cdots\!59}a^{20}+\frac{84\!\cdots\!91}{12\!\cdots\!59}a^{19}+\frac{20\!\cdots\!36}{12\!\cdots\!59}a^{18}+\frac{17\!\cdots\!61}{12\!\cdots\!59}a^{17}-\frac{34\!\cdots\!40}{12\!\cdots\!59}a^{16}+\frac{27\!\cdots\!00}{12\!\cdots\!59}a^{15}-\frac{35\!\cdots\!38}{12\!\cdots\!59}a^{14}+\frac{58\!\cdots\!82}{12\!\cdots\!59}a^{13}-\frac{34\!\cdots\!44}{12\!\cdots\!59}a^{12}+\frac{28\!\cdots\!99}{12\!\cdots\!59}a^{11}+\frac{60\!\cdots\!66}{12\!\cdots\!59}a^{10}+\frac{13\!\cdots\!58}{12\!\cdots\!59}a^{9}+\frac{30\!\cdots\!66}{12\!\cdots\!59}a^{8}+\frac{38\!\cdots\!50}{12\!\cdots\!59}a^{7}+\frac{30\!\cdots\!53}{40\!\cdots\!37}a^{6}+\frac{11\!\cdots\!59}{12\!\cdots\!59}a^{5}+\frac{20\!\cdots\!66}{12\!\cdots\!59}a^{4}+\frac{16\!\cdots\!52}{12\!\cdots\!59}a^{3}+\frac{20\!\cdots\!23}{12\!\cdots\!59}a^{2}+\frac{96\!\cdots\!93}{12\!\cdots\!59}a+\frac{58\!\cdots\!43}{23\!\cdots\!11}$, $\frac{12\!\cdots\!34}{12\!\cdots\!59}a^{29}-\frac{24\!\cdots\!71}{12\!\cdots\!59}a^{28}+\frac{52\!\cdots\!17}{12\!\cdots\!59}a^{27}-\frac{10\!\cdots\!20}{12\!\cdots\!59}a^{26}+\frac{96\!\cdots\!34}{12\!\cdots\!59}a^{25}-\frac{18\!\cdots\!21}{12\!\cdots\!59}a^{24}+\frac{93\!\cdots\!72}{12\!\cdots\!59}a^{23}-\frac{16\!\cdots\!24}{12\!\cdots\!59}a^{22}+\frac{52\!\cdots\!64}{12\!\cdots\!59}a^{21}-\frac{79\!\cdots\!77}{12\!\cdots\!59}a^{20}+\frac{16\!\cdots\!35}{12\!\cdots\!59}a^{19}-\frac{19\!\cdots\!94}{12\!\cdots\!59}a^{18}+\frac{28\!\cdots\!98}{12\!\cdots\!59}a^{17}-\frac{57\!\cdots\!13}{12\!\cdots\!59}a^{16}+\frac{27\!\cdots\!84}{12\!\cdots\!59}a^{15}-\frac{40\!\cdots\!94}{12\!\cdots\!59}a^{14}+\frac{73\!\cdots\!38}{12\!\cdots\!59}a^{13}+\frac{84\!\cdots\!19}{12\!\cdots\!59}a^{12}+\frac{27\!\cdots\!32}{12\!\cdots\!59}a^{11}+\frac{15\!\cdots\!57}{12\!\cdots\!59}a^{10}+\frac{77\!\cdots\!37}{12\!\cdots\!59}a^{9}+\frac{70\!\cdots\!94}{12\!\cdots\!59}a^{8}+\frac{27\!\cdots\!95}{12\!\cdots\!59}a^{7}+\frac{59\!\cdots\!05}{40\!\cdots\!37}a^{6}+\frac{97\!\cdots\!51}{12\!\cdots\!59}a^{5}+\frac{36\!\cdots\!62}{12\!\cdots\!59}a^{4}+\frac{10\!\cdots\!13}{12\!\cdots\!59}a^{3}+\frac{40\!\cdots\!04}{12\!\cdots\!59}a^{2}+\frac{33\!\cdots\!45}{12\!\cdots\!59}a+\frac{38\!\cdots\!80}{23\!\cdots\!11}$, $\frac{17\!\cdots\!79}{12\!\cdots\!59}a^{29}+\frac{13\!\cdots\!21}{12\!\cdots\!59}a^{28}+\frac{81\!\cdots\!55}{12\!\cdots\!59}a^{27}+\frac{31\!\cdots\!09}{12\!\cdots\!59}a^{26}+\frac{16\!\cdots\!36}{12\!\cdots\!59}a^{25}-\frac{13\!\cdots\!46}{12\!\cdots\!59}a^{24}+\frac{18\!\cdots\!51}{12\!\cdots\!59}a^{23}-\frac{11\!\cdots\!85}{12\!\cdots\!59}a^{22}+\frac{13\!\cdots\!48}{12\!\cdots\!59}a^{21}-\frac{15\!\cdots\!41}{12\!\cdots\!59}a^{20}+\frac{72\!\cdots\!12}{12\!\cdots\!59}a^{19}-\frac{11\!\cdots\!15}{12\!\cdots\!59}a^{18}+\frac{27\!\cdots\!98}{12\!\cdots\!59}a^{17}-\frac{48\!\cdots\!05}{12\!\cdots\!59}a^{16}+\frac{86\!\cdots\!71}{12\!\cdots\!59}a^{15}-\frac{15\!\cdots\!06}{12\!\cdots\!59}a^{14}+\frac{25\!\cdots\!94}{12\!\cdots\!59}a^{13}-\frac{45\!\cdots\!76}{12\!\cdots\!59}a^{12}+\frac{89\!\cdots\!68}{12\!\cdots\!59}a^{11}-\frac{12\!\cdots\!61}{12\!\cdots\!59}a^{10}+\frac{27\!\cdots\!70}{12\!\cdots\!59}a^{9}-\frac{24\!\cdots\!62}{12\!\cdots\!59}a^{8}+\frac{55\!\cdots\!75}{12\!\cdots\!59}a^{7}-\frac{10\!\cdots\!57}{40\!\cdots\!37}a^{6}+\frac{10\!\cdots\!05}{12\!\cdots\!59}a^{5}-\frac{55\!\cdots\!10}{12\!\cdots\!59}a^{4}+\frac{16\!\cdots\!69}{12\!\cdots\!59}a^{3}-\frac{13\!\cdots\!03}{12\!\cdots\!59}a^{2}+\frac{14\!\cdots\!40}{12\!\cdots\!59}a-\frac{21\!\cdots\!12}{23\!\cdots\!11}$, $\frac{13\!\cdots\!36}{12\!\cdots\!59}a^{29}-\frac{15\!\cdots\!45}{12\!\cdots\!59}a^{28}+\frac{61\!\cdots\!86}{12\!\cdots\!59}a^{27}-\frac{71\!\cdots\!99}{12\!\cdots\!59}a^{26}+\frac{12\!\cdots\!54}{12\!\cdots\!59}a^{25}-\frac{14\!\cdots\!67}{12\!\cdots\!59}a^{24}+\frac{13\!\cdots\!00}{12\!\cdots\!59}a^{23}-\frac{16\!\cdots\!89}{12\!\cdots\!59}a^{22}+\frac{89\!\cdots\!00}{12\!\cdots\!59}a^{21}-\frac{11\!\cdots\!80}{12\!\cdots\!59}a^{20}+\frac{40\!\cdots\!78}{12\!\cdots\!59}a^{19}-\frac{58\!\cdots\!38}{12\!\cdots\!59}a^{18}+\frac{13\!\cdots\!07}{12\!\cdots\!59}a^{17}-\frac{21\!\cdots\!94}{12\!\cdots\!59}a^{16}+\frac{38\!\cdots\!64}{12\!\cdots\!59}a^{15}-\frac{69\!\cdots\!16}{12\!\cdots\!59}a^{14}+\frac{12\!\cdots\!56}{12\!\cdots\!59}a^{13}-\frac{20\!\cdots\!11}{12\!\cdots\!59}a^{12}+\frac{38\!\cdots\!61}{12\!\cdots\!59}a^{11}-\frac{45\!\cdots\!15}{12\!\cdots\!59}a^{10}+\frac{98\!\cdots\!80}{12\!\cdots\!59}a^{9}-\frac{68\!\cdots\!21}{12\!\cdots\!59}a^{8}+\frac{19\!\cdots\!64}{12\!\cdots\!59}a^{7}-\frac{24\!\cdots\!96}{40\!\cdots\!37}a^{6}+\frac{35\!\cdots\!72}{12\!\cdots\!59}a^{5}-\frac{10\!\cdots\!21}{12\!\cdots\!59}a^{4}+\frac{53\!\cdots\!42}{12\!\cdots\!59}a^{3}-\frac{34\!\cdots\!07}{12\!\cdots\!59}a^{2}+\frac{46\!\cdots\!47}{12\!\cdots\!59}a-\frac{62\!\cdots\!77}{23\!\cdots\!11}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 4697581952.048968 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{15}\cdot 4697581952.048968 \cdot 956736}{2\cdot\sqrt{252273899561549903518384292359448695620714577809320549079}}\cr\approx \mathstrut & 0.132861255086496 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^30 - x^29 + 47*x^28 - 48*x^27 + 944*x^26 - 993*x^25 + 10687*x^24 - 11729*x^23 + 76154*x^22 - 88925*x^21 + 366388*x^20 - 468468*x^19 + 1294545*x^18 - 1888754*x^17 + 3897814*x^16 - 6566292*x^15 + 11930723*x^14 - 20080376*x^13 + 37185318*x^12 - 47602046*x^11 + 102379331*x^10 - 79703953*x^9 + 234755530*x^8 - 89460368*x^7 + 475554491*x^6 - 73175697*x^5 + 799313122*x^4 - 123217303*x^3 + 950484078*x^2 - 224979702*x + 533593369)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^30 - x^29 + 47*x^28 - 48*x^27 + 944*x^26 - 993*x^25 + 10687*x^24 - 11729*x^23 + 76154*x^22 - 88925*x^21 + 366388*x^20 - 468468*x^19 + 1294545*x^18 - 1888754*x^17 + 3897814*x^16 - 6566292*x^15 + 11930723*x^14 - 20080376*x^13 + 37185318*x^12 - 47602046*x^11 + 102379331*x^10 - 79703953*x^9 + 234755530*x^8 - 89460368*x^7 + 475554491*x^6 - 73175697*x^5 + 799313122*x^4 - 123217303*x^3 + 950484078*x^2 - 224979702*x + 533593369, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^30 - x^29 + 47*x^28 - 48*x^27 + 944*x^26 - 993*x^25 + 10687*x^24 - 11729*x^23 + 76154*x^22 - 88925*x^21 + 366388*x^20 - 468468*x^19 + 1294545*x^18 - 1888754*x^17 + 3897814*x^16 - 6566292*x^15 + 11930723*x^14 - 20080376*x^13 + 37185318*x^12 - 47602046*x^11 + 102379331*x^10 - 79703953*x^9 + 234755530*x^8 - 89460368*x^7 + 475554491*x^6 - 73175697*x^5 + 799313122*x^4 - 123217303*x^3 + 950484078*x^2 - 224979702*x + 533593369);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^30 - x^29 + 47*x^28 - 48*x^27 + 944*x^26 - 993*x^25 + 10687*x^24 - 11729*x^23 + 76154*x^22 - 88925*x^21 + 366388*x^20 - 468468*x^19 + 1294545*x^18 - 1888754*x^17 + 3897814*x^16 - 6566292*x^15 + 11930723*x^14 - 20080376*x^13 + 37185318*x^12 - 47602046*x^11 + 102379331*x^10 - 79703953*x^9 + 234755530*x^8 - 89460368*x^7 + 475554491*x^6 - 73175697*x^5 + 799313122*x^4 - 123217303*x^3 + 950484078*x^2 - 224979702*x + 533593369);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_{30}$ (as 30T1):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A cyclic group of order 30
The 30 conjugacy class representatives for $C_{30}$
Character table for $C_{30}$ is not computed

Intermediate fields

\(\Q(\sqrt{-231}) \), \(\Q(\zeta_{7})^+\), \(\Q(\zeta_{11})^+\), 6.0.603993159.1, 10.0.9630096522760791.1, 15.15.886528337182930278529.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type $15^{2}$ R $15^{2}$ R R ${\href{/padicField/13.5.0.1}{5} }^{6}$ $30$ $15^{2}$ ${\href{/padicField/23.6.0.1}{6} }^{5}$ ${\href{/padicField/29.5.0.1}{5} }^{6}$ $30$ $15^{2}$ ${\href{/padicField/41.10.0.1}{10} }^{3}$ ${\href{/padicField/43.2.0.1}{2} }^{15}$ $15^{2}$ $30$ $15^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(3\) Copy content Toggle raw display Deg $30$$2$$15$$15$
\(7\) Copy content Toggle raw display Deg $30$$6$$5$$25$
\(11\) Copy content Toggle raw display Deg $30$$10$$3$$27$