Normalized defining polynomial
\( x^{30} + 58 x^{28} + 1512 x^{26} + 23400 x^{24} + 239200 x^{22} + 1700160 x^{20} + 8614144 x^{18} + 31380096 x^{16} + 81861120 x^{14} + 150492160 x^{12} + 189190144 x^{10} + 154791936 x^{8} + 76038144 x^{6} + 19496960 x^{4} + 1966080 x^{2} + 32768 \)
Invariants
| Degree: | $30$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 15]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-20159382829191092591451779536401274948781988965475418112=-\,2^{45}\cdot 31^{28}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $69.74$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 31$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(248=2^{3}\cdot 31\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{248}(1,·)$, $\chi_{248}(131,·)$, $\chi_{248}(227,·)$, $\chi_{248}(211,·)$, $\chi_{248}(129,·)$, $\chi_{248}(9,·)$, $\chi_{248}(81,·)$, $\chi_{248}(19,·)$, $\chi_{248}(171,·)$, $\chi_{248}(225,·)$, $\chi_{248}(25,·)$, $\chi_{248}(219,·)$, $\chi_{248}(107,·)$, $\chi_{248}(33,·)$, $\chi_{248}(67,·)$, $\chi_{248}(35,·)$, $\chi_{248}(113,·)$, $\chi_{248}(163,·)$, $\chi_{248}(195,·)$, $\chi_{248}(97,·)$, $\chi_{248}(41,·)$, $\chi_{248}(193,·)$, $\chi_{248}(235,·)$, $\chi_{248}(49,·)$, $\chi_{248}(51,·)$, $\chi_{248}(187,·)$, $\chi_{248}(233,·)$, $\chi_{248}(121,·)$, $\chi_{248}(59,·)$, $\chi_{248}(169,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2}$, $\frac{1}{2} a^{3}$, $\frac{1}{4} a^{4}$, $\frac{1}{4} a^{5}$, $\frac{1}{8} a^{6}$, $\frac{1}{8} a^{7}$, $\frac{1}{16} a^{8}$, $\frac{1}{16} a^{9}$, $\frac{1}{32} a^{10}$, $\frac{1}{32} a^{11}$, $\frac{1}{64} a^{12}$, $\frac{1}{64} a^{13}$, $\frac{1}{128} a^{14}$, $\frac{1}{128} a^{15}$, $\frac{1}{256} a^{16}$, $\frac{1}{256} a^{17}$, $\frac{1}{512} a^{18}$, $\frac{1}{512} a^{19}$, $\frac{1}{1024} a^{20}$, $\frac{1}{1024} a^{21}$, $\frac{1}{2048} a^{22}$, $\frac{1}{2048} a^{23}$, $\frac{1}{4096} a^{24}$, $\frac{1}{4096} a^{25}$, $\frac{1}{8192} a^{26}$, $\frac{1}{8192} a^{27}$, $\frac{1}{16384} a^{28}$, $\frac{1}{16384} a^{29}$
Class group and class number
$C_{2}\times C_{116182}$, which has order $232364$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4316173757.895952 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 30 |
| The 30 conjugacy class representatives for $C_{30}$ |
| Character table for $C_{30}$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-2}) \), 3.3.961.1, 5.5.923521.1, 6.0.472842752.1, 10.0.27947533514866688.1, \(\Q(\zeta_{31})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $15^{2}$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{5}$ | $30$ | $15^{2}$ | $30$ | $15^{2}$ | $15^{2}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }^{3}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{3}$ | R | ${\href{/LocalNumberField/37.6.0.1}{6} }^{5}$ | $15^{2}$ | $15^{2}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{3}$ | $30$ | $15^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.15.9 | $x^{10} - 6 x^{8} - 24 x^{6} + 80 x^{4} + 336 x^{2} + 33056$ | $2$ | $5$ | $15$ | $C_{10}$ | $[3]^{5}$ |
| 2.10.15.9 | $x^{10} - 6 x^{8} - 24 x^{6} + 80 x^{4} + 336 x^{2} + 33056$ | $2$ | $5$ | $15$ | $C_{10}$ | $[3]^{5}$ | |
| 2.10.15.9 | $x^{10} - 6 x^{8} - 24 x^{6} + 80 x^{4} + 336 x^{2} + 33056$ | $2$ | $5$ | $15$ | $C_{10}$ | $[3]^{5}$ | |
| 31 | Data not computed | ||||||