Normalized defining polynomial
\( x^{30} + 70 x^{28} + 2077 x^{26} + 34524 x^{24} + 357772 x^{22} + 2434242 x^{20} + 11154782 x^{18} + 34753087 x^{16} + 73408942 x^{14} + 103666360 x^{12} + 95476739 x^{10} + 55508682 x^{8} + 19688626 x^{6} + 4040689 x^{4} + 428115 x^{2} + 17161 \)
Invariants
| Degree: | $30$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 15]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-200997825885699545538652088865450292514220326691153117184=-\,2^{30}\cdot 11^{24}\cdot 13^{20}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $75.30$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 11, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(572=2^{2}\cdot 11\cdot 13\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{572}(1,·)$, $\chi_{572}(3,·)$, $\chi_{572}(133,·)$, $\chi_{572}(81,·)$, $\chi_{572}(9,·)$, $\chi_{572}(471,·)$, $\chi_{572}(269,·)$, $\chi_{572}(399,·)$, $\chi_{572}(529,·)$, $\chi_{572}(339,·)$, $\chi_{572}(313,·)$, $\chi_{572}(27,·)$, $\chi_{572}(157,·)$, $\chi_{572}(287,·)$, $\chi_{572}(367,·)$, $\chi_{572}(289,·)$, $\chi_{572}(419,·)$, $\chi_{572}(295,·)$, $\chi_{572}(555,·)$, $\chi_{572}(477,·)$, $\chi_{572}(113,·)$, $\chi_{572}(443,·)$, $\chi_{572}(243,·)$, $\chi_{572}(235,·)$, $\chi_{572}(53,·)$, $\chi_{572}(521,·)$, $\chi_{572}(185,·)$, $\chi_{572}(159,·)$, $\chi_{572}(445,·)$, $\chi_{572}(191,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $\frac{1}{463} a^{22} + \frac{176}{463} a^{20} + \frac{152}{463} a^{18} - \frac{96}{463} a^{16} - \frac{142}{463} a^{14} + \frac{66}{463} a^{12} - \frac{52}{463} a^{10} + \frac{227}{463} a^{8} - \frac{174}{463} a^{6} - \frac{143}{463} a^{4} + \frac{32}{463} a^{2} - \frac{183}{463}$, $\frac{1}{463} a^{23} + \frac{176}{463} a^{21} + \frac{152}{463} a^{19} - \frac{96}{463} a^{17} - \frac{142}{463} a^{15} + \frac{66}{463} a^{13} - \frac{52}{463} a^{11} + \frac{227}{463} a^{9} - \frac{174}{463} a^{7} - \frac{143}{463} a^{5} + \frac{32}{463} a^{3} - \frac{183}{463} a$, $\frac{1}{50467} a^{24} + \frac{54}{50467} a^{22} + \frac{18035}{50467} a^{20} - \frac{21881}{50467} a^{18} + \frac{458}{50467} a^{16} - \frac{2519}{50467} a^{14} + \frac{22917}{50467} a^{12} - \frac{4541}{50467} a^{10} + \frac{838}{50467} a^{8} + \frac{13677}{50467} a^{6} - \frac{21414}{50467} a^{4} - \frac{11495}{50467} a^{2} + \frac{16770}{50467}$, $\frac{1}{50467} a^{25} + \frac{54}{50467} a^{23} + \frac{18035}{50467} a^{21} - \frac{21881}{50467} a^{19} + \frac{458}{50467} a^{17} - \frac{2519}{50467} a^{15} + \frac{22917}{50467} a^{13} - \frac{4541}{50467} a^{11} + \frac{838}{50467} a^{9} + \frac{13677}{50467} a^{7} - \frac{21414}{50467} a^{5} - \frac{11495}{50467} a^{3} + \frac{16770}{50467} a$, $\frac{1}{50467} a^{26} - \frac{32}{50467} a^{22} + \frac{21744}{50467} a^{20} - \frac{10646}{50467} a^{18} + \frac{14169}{50467} a^{16} - \frac{11097}{50467} a^{14} - \frac{21477}{50467} a^{12} + \frac{24564}{50467} a^{10} + \frac{11371}{50467} a^{8} + \frac{9023}{50467} a^{6} - \frac{19368}{50467} a^{4} + \frac{1267}{50467} a^{2} - \frac{226}{50467}$, $\frac{1}{6611177} a^{27} - \frac{42}{6611177} a^{25} - \frac{1210}{6611177} a^{23} - \frac{1401825}{6611177} a^{21} - \frac{742776}{6611177} a^{19} - \frac{3087260}{6611177} a^{17} - \frac{867551}{6611177} a^{15} - \frac{508315}{6611177} a^{13} + \frac{1975418}{6611177} a^{11} - \frac{735268}{6611177} a^{9} - \frac{1158807}{6611177} a^{7} + \frac{370881}{6611177} a^{5} - \frac{843672}{6611177} a^{3} + \frac{408106}{6611177} a$, $\frac{1}{100239256236658258593876419} a^{28} + \frac{273065104455502171323}{100239256236658258593876419} a^{26} + \frac{34554053359108253684}{100239256236658258593876419} a^{24} - \frac{54254522271295184272599}{100239256236658258593876419} a^{22} + \frac{6802938048994185768021841}{100239256236658258593876419} a^{20} - \frac{11082507291005147424007157}{100239256236658258593876419} a^{18} - \frac{38268232183370439073963774}{100239256236658258593876419} a^{16} - \frac{24478393254562750615248308}{100239256236658258593876419} a^{14} - \frac{33730765517414664684825720}{100239256236658258593876419} a^{12} - \frac{45489097467099949267526733}{100239256236658258593876419} a^{10} + \frac{32915916123579430253314986}{100239256236658258593876419} a^{8} + \frac{21137200046469820444703225}{100239256236658258593876419} a^{6} + \frac{23824928273807358845798647}{100239256236658258593876419} a^{4} + \frac{1006019626785523569509812}{100239256236658258593876419} a^{2} - \frac{195765518155017651734868}{765185162111895103770049}$, $\frac{1}{100239256236658258593876419} a^{29} + \frac{147496553029033077}{100239256236658258593876419} a^{27} - \frac{420308626478346976726}{100239256236658258593876419} a^{25} + \frac{65435010883267202022619}{100239256236658258593876419} a^{23} - \frac{50054639175169143475264260}{100239256236658258593876419} a^{21} + \frac{17018378396226359679620498}{100239256236658258593876419} a^{19} - \frac{44640737031178563530613098}{100239256236658258593876419} a^{17} - \frac{19652876380881811397223394}{100239256236658258593876419} a^{15} - \frac{39296571402531062290342909}{100239256236658258593876419} a^{13} + \frac{48421062983496006013855823}{100239256236658258593876419} a^{11} + \frac{21169709062439593450124963}{100239256236658258593876419} a^{9} - \frac{1179348562162047645543930}{100239256236658258593876419} a^{7} + \frac{15646118238096715923668172}{100239256236658258593876419} a^{5} - \frac{18851556496734389460315230}{100239256236658258593876419} a^{3} - \frac{15161213619091118432245006}{100239256236658258593876419} a$
Class group and class number
$C_{82893}$, which has order $82893$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{20264186859181}{28886420612587} a^{29} - \frac{1412206980484869}{28886420612587} a^{27} - \frac{41650640010959341}{28886420612587} a^{25} - \frac{686680513155750989}{28886420612587} a^{23} - \frac{7036947063150442136}{28886420612587} a^{21} - \frac{359885876854603119}{220507027577} a^{19} - \frac{211418118908091960408}{28886420612587} a^{17} - \frac{638661324861810648144}{28886420612587} a^{15} - \frac{1289462304298929655434}{28886420612587} a^{13} - \frac{1700733723430232766249}{28886420612587} a^{11} - \frac{1407214205458401532778}{28886420612587} a^{9} - \frac{688350935750064354818}{28886420612587} a^{7} - \frac{185470409763784403928}{28886420612587} a^{5} - \frac{24357506181722527341}{28886420612587} a^{3} - \frac{1121450382722044276}{28886420612587} a \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 85915831770.81862 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 30 |
| The 30 conjugacy class representatives for $C_{30}$ |
| Character table for $C_{30}$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-1}) \), 3.3.169.1, \(\Q(\zeta_{11})^+\), 6.0.1827904.1, 10.0.219503494144.1, 15.15.432659002790862279847129.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $30$ | ${\href{/LocalNumberField/5.5.0.1}{5} }^{6}$ | $30$ | R | R | $15^{2}$ | $30$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{5}$ | $15^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{3}$ | $15^{2}$ | $15^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{5}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{3}$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{6}$ | $30$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 11 | Data not computed | ||||||
| $13$ | 13.15.10.1 | $x^{15} + 79092 x^{6} - 228488 x^{3} + 80199288$ | $3$ | $5$ | $10$ | $C_{15}$ | $[\ ]_{3}^{5}$ |
| 13.15.10.1 | $x^{15} + 79092 x^{6} - 228488 x^{3} + 80199288$ | $3$ | $5$ | $10$ | $C_{15}$ | $[\ ]_{3}^{5}$ | |