Properties

Label 30.0.177...271.1
Degree $30$
Signature $[0, 15]$
Discriminant $-1.776\times 10^{43}$
Root discriminant $27.65$
Ramified prime $31$
Class number $9$ (GRH)
Class group $[9]$ (GRH)
Galois group $C_{30}$ (as 30T1)

Related objects

Downloads

Learn more about

Show commands for: SageMath / Pari/GP / Magma

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^30 - x^29 + x^28 - x^27 + x^26 - x^25 + x^24 - x^23 + x^22 - x^21 + x^20 - x^19 + x^18 - x^17 + x^16 - x^15 + x^14 - x^13 + x^12 - x^11 + x^10 - x^9 + x^8 - x^7 + x^6 - x^5 + x^4 - x^3 + x^2 - x + 1)
 
gp: K = bnfinit(x^30 - x^29 + x^28 - x^27 + x^26 - x^25 + x^24 - x^23 + x^22 - x^21 + x^20 - x^19 + x^18 - x^17 + x^16 - x^15 + x^14 - x^13 + x^12 - x^11 + x^10 - x^9 + x^8 - x^7 + x^6 - x^5 + x^4 - x^3 + x^2 - x + 1, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1]);
 

\( x^{30} - x^{29} + x^{28} - x^{27} + x^{26} - x^{25} + x^{24} - x^{23} + x^{22} - x^{21} + x^{20} - x^{19} + x^{18} - x^{17} + x^{16} - x^{15} + x^{14} - x^{13} + x^{12} - x^{11} + x^{10} - x^{9} + x^{8} - x^{7} + x^{6} - x^{5} + x^{4} - x^{3} + x^{2} - x + 1 \)

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 

Invariants

Degree:  $30$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
Signature:  $[0, 15]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
Discriminant:  \(-17761887753093897979823770061456102763834271\)\(\medspace = -\,31^{29}\)
sage: K.disc()
 
gp: K.disc
 
magma: Discriminant(Integers(K));
 
Root discriminant:  $27.65$
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
Ramified primes:  $31$
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(Integers(K)));
 
$|\Gal(K/\Q)|$:  $30$
This field is Galois and abelian over $\Q$.
Conductor:  \(31\)
Dirichlet character group:    $\lbrace$$\chi_{31}(1,·)$, $\chi_{31}(2,·)$, $\chi_{31}(3,·)$, $\chi_{31}(4,·)$, $\chi_{31}(5,·)$, $\chi_{31}(6,·)$, $\chi_{31}(7,·)$, $\chi_{31}(8,·)$, $\chi_{31}(9,·)$, $\chi_{31}(10,·)$, $\chi_{31}(11,·)$, $\chi_{31}(12,·)$, $\chi_{31}(13,·)$, $\chi_{31}(14,·)$, $\chi_{31}(15,·)$, $\chi_{31}(16,·)$, $\chi_{31}(17,·)$, $\chi_{31}(18,·)$, $\chi_{31}(19,·)$, $\chi_{31}(20,·)$, $\chi_{31}(21,·)$, $\chi_{31}(22,·)$, $\chi_{31}(23,·)$, $\chi_{31}(24,·)$, $\chi_{31}(25,·)$, $\chi_{31}(26,·)$, $\chi_{31}(27,·)$, $\chi_{31}(28,·)$, $\chi_{31}(29,·)$, $\chi_{31}(30,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $a^{27}$, $a^{28}$, $a^{29}$

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 

Class group and class number

$C_{9}$, which has order $9$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, f := UnitGroup(K);
 
Rank:  $14$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
Torsion generator:  \( a \) (order $62$)
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
Fundamental units:  \( a - 1 \),  \( a^{2} + 1 \),  \( a^{3} - 1 \),  \( a^{2} - a + 1 \),  \( a^{4} + 1 \),  \( a^{27} + a^{23} - a^{18} - a^{14} + a^{9} + a^{5} - 1 \),  \( a^{22} - a^{11} + 1 \),  \( a^{21} + a^{11} + a \),  \( a^{6} + 1 \),  \( a^{6} - a^{5} + a^{4} - a^{3} + a^{2} - a + 1 \),  \( a^{25} + a^{19} + a^{13} \),  \( a^{4} - a^{3} + a^{2} - a + 1 \),  \( a^{17} + a^{3} \),  \( a^{16} - a \) (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K!f(g): g in Generators(UK)];
 
Regulator:  \( 4316173757.895952 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 

Class number formula

$\displaystyle\lim_{s\to 1} (s-1)\zeta_K(s) \approx\frac{2^{0}\cdot(2\pi)^{15}\cdot 4316173757.895952 \cdot 9}{62\sqrt{17761887753093897979823770061456102763834271}}\approx 0.139605717378470$ (assuming GRH)

Galois group

$C_{30}$ (as 30T1):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: GaloisGroup(K);
 
A cyclic group of order 30
The 30 conjugacy class representatives for $C_{30}$
Character table for $C_{30}$ is not computed

Intermediate fields

\(\Q(\sqrt{-31}) \), 3.3.961.1, 5.5.923521.1, 6.0.28629151.1, 10.0.26439622160671.1, \(\Q(\zeta_{31})^+\)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type ${\href{/LocalNumberField/2.5.0.1}{5} }^{6}$ $30$ ${\href{/LocalNumberField/5.3.0.1}{3} }^{10}$ $15^{2}$ $30$ $30$ $30$ $15^{2}$ ${\href{/LocalNumberField/23.10.0.1}{10} }^{3}$ ${\href{/LocalNumberField/29.10.0.1}{10} }^{3}$ R ${\href{/LocalNumberField/37.6.0.1}{6} }^{5}$ $15^{2}$ $30$ ${\href{/LocalNumberField/47.5.0.1}{5} }^{6}$ $30$ $15^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 
magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
31Data not computed