Normalized defining polynomial
\( x^{30} + 3 x^{28} - x^{27} + 9 x^{26} - 6 x^{25} + 28 x^{24} - 27 x^{23} + 90 x^{22} - 109 x^{21} + 297 x^{20} + 507 x^{19} + 1000 x^{18} + 1224 x^{17} + 2493 x^{16} + 2672 x^{15} + 6255 x^{14} + 5523 x^{13} + 16093 x^{12} + 10314 x^{11} + 42756 x^{10} + 14849 x^{9} + 5157 x^{8} + 1791 x^{7} + 622 x^{6} + 216 x^{5} + 75 x^{4} + 26 x^{3} + 9 x^{2} + 3 x + 1 \)
Invariants
| Degree: | $30$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 15]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-159386923550435671074967363509984324121230045171=-\,3^{40}\cdot 11^{27}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $37.45$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(99=3^{2}\cdot 11\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{99}(64,·)$, $\chi_{99}(1,·)$, $\chi_{99}(67,·)$, $\chi_{99}(4,·)$, $\chi_{99}(70,·)$, $\chi_{99}(7,·)$, $\chi_{99}(73,·)$, $\chi_{99}(10,·)$, $\chi_{99}(76,·)$, $\chi_{99}(13,·)$, $\chi_{99}(79,·)$, $\chi_{99}(16,·)$, $\chi_{99}(82,·)$, $\chi_{99}(19,·)$, $\chi_{99}(85,·)$, $\chi_{99}(25,·)$, $\chi_{99}(91,·)$, $\chi_{99}(28,·)$, $\chi_{99}(94,·)$, $\chi_{99}(31,·)$, $\chi_{99}(97,·)$, $\chi_{99}(34,·)$, $\chi_{99}(37,·)$, $\chi_{99}(40,·)$, $\chi_{99}(43,·)$, $\chi_{99}(46,·)$, $\chi_{99}(49,·)$, $\chi_{99}(52,·)$, $\chi_{99}(58,·)$, $\chi_{99}(61,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $\frac{1}{14317073} a^{21} - \frac{4597228}{14317073} a^{20} + \frac{48209}{14317073} a^{19} + \frac{525388}{14317073} a^{18} + \frac{4741855}{14317073} a^{17} + \frac{1527955}{14317073} a^{16} - \frac{616896}{14317073} a^{15} - \frac{157990}{14317073} a^{14} - \frac{3378643}{14317073} a^{13} + \frac{142926}{14317073} a^{12} + \frac{4339134}{14317073} a^{11} - \frac{5254364}{14317073} a^{10} + \frac{1444706}{14317073} a^{9} + \frac{4338513}{14317073} a^{8} - \frac{4728591}{14317073} a^{7} - \frac{2746240}{14317073} a^{6} - \frac{4207213}{14317073} a^{5} - \frac{3510129}{14317073} a^{4} + \frac{4441674}{14317073} a^{3} - \frac{6323174}{14317073} a^{2} + \frac{2518078}{14317073} a + \frac{5222950}{14317073}$, $\frac{1}{14317073} a^{22} + \frac{5255288}{14317073} a^{11} + \frac{439665}{14317073}$, $\frac{1}{14317073} a^{23} + \frac{5255288}{14317073} a^{12} + \frac{439665}{14317073} a$, $\frac{1}{14317073} a^{24} + \frac{5255288}{14317073} a^{13} + \frac{439665}{14317073} a^{2}$, $\frac{1}{14317073} a^{25} + \frac{5255288}{14317073} a^{14} + \frac{439665}{14317073} a^{3}$, $\frac{1}{14317073} a^{26} + \frac{5255288}{14317073} a^{15} + \frac{439665}{14317073} a^{4}$, $\frac{1}{14317073} a^{27} + \frac{5255288}{14317073} a^{16} + \frac{439665}{14317073} a^{5}$, $\frac{1}{14317073} a^{28} + \frac{5255288}{14317073} a^{17} + \frac{439665}{14317073} a^{6}$, $\frac{1}{14317073} a^{29} + \frac{5255288}{14317073} a^{18} + \frac{439665}{14317073} a^{7}$
Class group and class number
$C_{93}$, which has order $93$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{1799175}{14317073} a^{28} + \frac{599725}{14317073} a^{27} - \frac{5397525}{14317073} a^{26} + \frac{3598350}{14317073} a^{25} - \frac{16792300}{14317073} a^{24} + \frac{16192575}{14317073} a^{23} - \frac{53975250}{14317073} a^{22} + \frac{65370025}{14317073} a^{21} - \frac{178118325}{14317073} a^{20} + \frac{250084998}{14317073} a^{19} - \frac{599725000}{14317073} a^{18} - \frac{734063400}{14317073} a^{17} - \frac{1495114425}{14317073} a^{16} - \frac{1602465200}{14317073} a^{15} - \frac{3751279875}{14317073} a^{14} - \frac{3312281175}{14317073} a^{13} - \frac{9651374425}{14317073} a^{12} - \frac{6185563650}{14317073} a^{11} - \frac{25641842100}{14317073} a^{10} - \frac{8905316525}{14317073} a^{9} - \frac{70740393066}{14317073} a^{8} - \frac{1074107475}{14317073} a^{7} - \frac{373028950}{14317073} a^{6} - \frac{129540600}{14317073} a^{5} - \frac{44979375}{14317073} a^{4} - \frac{15592850}{14317073} a^{3} - \frac{5397525}{14317073} a^{2} - \frac{1799175}{14317073} a - \frac{599725}{14317073} \) (order $22$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 15853905121.091976 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 30 |
| The 30 conjugacy class representatives for $C_{30}$ |
| Character table for $C_{30}$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-11}) \), \(\Q(\zeta_{9})^+\), \(\Q(\zeta_{11})^+\), 6.0.8732691.1, \(\Q(\zeta_{11})\), 15.15.10943023107606534329121.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $30$ | R | $15^{2}$ | $30$ | R | $30$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{3}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{3}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{10}$ | $30$ | $15^{2}$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{6}$ | $30$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{5}$ | $15^{2}$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{6}$ | $15^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.15.20.65 | $x^{15} + 78 x^{14} + 39 x^{13} + 49 x^{12} + 24 x^{11} + 36 x^{10} + 2 x^{9} + 54 x^{8} + 69 x^{7} + 47 x^{6} + 18 x^{5} + 15 x^{4} + 36 x^{3} + 36 x^{2} + 63 x + 73$ | $3$ | $5$ | $20$ | $C_{15}$ | $[2]^{5}$ |
| 3.15.20.65 | $x^{15} + 78 x^{14} + 39 x^{13} + 49 x^{12} + 24 x^{11} + 36 x^{10} + 2 x^{9} + 54 x^{8} + 69 x^{7} + 47 x^{6} + 18 x^{5} + 15 x^{4} + 36 x^{3} + 36 x^{2} + 63 x + 73$ | $3$ | $5$ | $20$ | $C_{15}$ | $[2]^{5}$ | |
| 11 | Data not computed | ||||||