\\ Pari/GP code for working with number field 30.0.13209167403604364499542354001933559191813355687.1 \\ (Note that not all these functions may be available, and some may take a long time to execute.) \\ Define the number field: K = bnfinit(x^30 - x^29 + 5*x^28 - 6*x^27 + 20*x^26 - 27*x^25 + 75*x^24 - 46*x^23 + 211*x^22 - 109*x^21 + 617*x^20 - 357*x^19 + 1911*x^18 - 1372*x^17 + 2909*x^16 - 2210*x^15 + 4354*x^14 - 2262*x^13 + 5693*x^12 + 2042*x^11 + 3092*x^10 + 1302*x^9 + 2375*x^8 + 290*x^7 + 1798*x^6 - 511*x^5 + 146*x^4 - 41*x^3 + 12*x^2 - 3*x + 1, 1) \\ Defining polynomial: K.pol \\ Degree over Q: poldegree(K.pol) \\ Signature: K.sign \\ Discriminant: K.disc \\ Ramified primes: factor(abs(K.disc))[,1]~ \\ Integral basis: K.zk \\ Class group: K.clgp \\ Unit rank: K.fu \\ Generator for roots of unity: K.tu[2] \\ Fundamental units: K.fu \\ Regulator: K.reg \\ Galois group: polgalois(K.pol) \\ Frobenius cycle types: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$: idealfactors = idealprimedec(K, p); \\ get the data vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])