Normalized defining polynomial
\( x^{30} - x^{29} + 5 x^{28} - 6 x^{27} + 20 x^{26} - 27 x^{25} + 75 x^{24} - 46 x^{23} + 211 x^{22} - 109 x^{21} + 617 x^{20} - 357 x^{19} + 1911 x^{18} - 1372 x^{17} + 2909 x^{16} - 2210 x^{15} + 4354 x^{14} - 2262 x^{13} + 5693 x^{12} + 2042 x^{11} + 3092 x^{10} + 1302 x^{9} + 2375 x^{8} + 290 x^{7} + 1798 x^{6} - 511 x^{5} + 146 x^{4} - 41 x^{3} + 12 x^{2} - 3 x + 1 \)
Invariants
| Degree: | $30$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 15]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-13209167403604364499542354001933559191813355687=-\,7^{25}\cdot 11^{24}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $34.46$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(77=7\cdot 11\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{77}(64,·)$, $\chi_{77}(1,·)$, $\chi_{77}(3,·)$, $\chi_{77}(4,·)$, $\chi_{77}(5,·)$, $\chi_{77}(71,·)$, $\chi_{77}(9,·)$, $\chi_{77}(75,·)$, $\chi_{77}(12,·)$, $\chi_{77}(15,·)$, $\chi_{77}(16,·)$, $\chi_{77}(67,·)$, $\chi_{77}(20,·)$, $\chi_{77}(23,·)$, $\chi_{77}(25,·)$, $\chi_{77}(26,·)$, $\chi_{77}(27,·)$, $\chi_{77}(69,·)$, $\chi_{77}(31,·)$, $\chi_{77}(34,·)$, $\chi_{77}(36,·)$, $\chi_{77}(37,·)$, $\chi_{77}(38,·)$, $\chi_{77}(45,·)$, $\chi_{77}(47,·)$, $\chi_{77}(48,·)$, $\chi_{77}(53,·)$, $\chi_{77}(58,·)$, $\chi_{77}(59,·)$, $\chi_{77}(60,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{43} a^{19} - \frac{17}{43} a^{18} - \frac{14}{43} a^{17} + \frac{14}{43} a^{16} + \frac{5}{43} a^{15} + \frac{16}{43} a^{14} + \frac{19}{43} a^{13} - \frac{4}{43} a^{12} - \frac{13}{43} a^{11} + \frac{14}{43} a^{10} + \frac{3}{43} a^{9} + \frac{7}{43} a^{8} + \frac{4}{43} a^{7} + \frac{4}{43} a^{6} + \frac{9}{43} a^{5} + \frac{11}{43} a^{4} + \frac{10}{43} a^{3} - \frac{20}{43} a^{2} + \frac{19}{43} a + \frac{18}{43}$, $\frac{1}{43} a^{20} - \frac{2}{43} a^{18} - \frac{9}{43} a^{17} - \frac{15}{43} a^{16} + \frac{15}{43} a^{15} - \frac{10}{43} a^{14} + \frac{18}{43} a^{13} + \frac{5}{43} a^{12} + \frac{8}{43} a^{11} - \frac{17}{43} a^{10} + \frac{15}{43} a^{9} - \frac{6}{43} a^{8} - \frac{14}{43} a^{7} - \frac{9}{43} a^{6} - \frac{8}{43} a^{5} - \frac{18}{43} a^{4} + \frac{21}{43} a^{3} - \frac{20}{43} a^{2} - \frac{3}{43} a + \frac{5}{43}$, $\frac{1}{43} a^{21} + \frac{7}{43} a^{14} - \frac{1}{43} a^{7} - \frac{7}{43}$, $\frac{1}{43} a^{22} + \frac{7}{43} a^{15} - \frac{1}{43} a^{8} - \frac{7}{43} a$, $\frac{1}{43} a^{23} + \frac{7}{43} a^{16} - \frac{1}{43} a^{9} - \frac{7}{43} a^{2}$, $\frac{1}{43} a^{24} + \frac{7}{43} a^{17} - \frac{1}{43} a^{10} - \frac{7}{43} a^{3}$, $\frac{1}{396586807} a^{25} - \frac{4350714}{396586807} a^{24} - \frac{3410001}{396586807} a^{23} + \frac{4453046}{396586807} a^{22} - \frac{3476348}{396586807} a^{21} - \frac{3558177}{396586807} a^{20} - \frac{853258}{396586807} a^{19} - \frac{158131282}{396586807} a^{18} + \frac{38712637}{396586807} a^{17} + \frac{135694806}{396586807} a^{16} + \frac{76587940}{396586807} a^{15} + \frac{61497807}{396586807} a^{14} + \frac{103663006}{396586807} a^{13} + \frac{193760508}{396586807} a^{12} + \frac{104240870}{396586807} a^{11} + \frac{143709208}{396586807} a^{10} - \frac{78603003}{396586807} a^{9} - \frac{133814790}{396586807} a^{8} + \frac{112965244}{396586807} a^{7} + \frac{194614168}{396586807} a^{6} - \frac{33651863}{396586807} a^{5} + \frac{180382075}{396586807} a^{4} - \frac{3532178}{396586807} a^{3} + \frac{45653903}{396586807} a^{2} - \frac{138003062}{396586807} a + \frac{5432656}{396586807}$, $\frac{1}{17053232701} a^{26} - \frac{17}{17053232701} a^{25} - \frac{97613540}{17053232701} a^{24} + \frac{94533106}{17053232701} a^{23} - \frac{88400513}{17053232701} a^{22} + \frac{173692367}{17053232701} a^{21} + \frac{49145536}{17053232701} a^{20} + \frac{60840015}{17053232701} a^{19} - \frac{2587182035}{17053232701} a^{18} + \frac{186363464}{17053232701} a^{17} - \frac{5718119947}{17053232701} a^{16} + \frac{1246469766}{17053232701} a^{15} + \frac{1194079629}{17053232701} a^{14} + \frac{5718763938}{17053232701} a^{13} - \frac{4030494251}{17053232701} a^{12} - \frac{842854905}{17053232701} a^{11} - \frac{4665241032}{17053232701} a^{10} - \frac{3217753510}{17053232701} a^{9} + \frac{5057589376}{17053232701} a^{8} - \frac{8312034845}{17053232701} a^{7} - \frac{378755582}{17053232701} a^{6} + \frac{7078043486}{17053232701} a^{5} - \frac{2591698761}{17053232701} a^{4} + \frac{2626265490}{17053232701} a^{3} + \frac{3009221732}{17053232701} a^{2} - \frac{6857505879}{17053232701} a - \frac{6636223328}{17053232701}$, $\frac{1}{17053232701} a^{27} - \frac{2}{17053232701} a^{25} - \frac{80954690}{17053232701} a^{24} - \frac{76517526}{17053232701} a^{23} + \frac{149285566}{17053232701} a^{22} + \frac{94953880}{17053232701} a^{21} - \frac{14683529}{17053232701} a^{20} - \frac{170494006}{17053232701} a^{19} + \frac{430275151}{17053232701} a^{18} + \frac{4744523170}{17053232701} a^{17} + \frac{503790404}{17053232701} a^{16} + \frac{6014168224}{17053232701} a^{15} - \frac{2386785948}{17053232701} a^{14} + \frac{3772655943}{17053232701} a^{13} + \frac{449498506}{17053232701} a^{12} - \frac{7494769887}{17053232701} a^{11} - \frac{4904306360}{17053232701} a^{10} - \frac{5192960232}{17053232701} a^{9} - \frac{8319847735}{17053232701} a^{8} - \frac{5923274732}{17053232701} a^{7} + \frac{36439945}{86564633} a^{6} - \frac{6648973526}{17053232701} a^{5} + \frac{2459203371}{17053232701} a^{4} + \frac{2033338395}{17053232701} a^{3} + \frac{4534251734}{17053232701} a^{2} + \frac{3915623022}{17053232701} a - \frac{3012685487}{17053232701}$, $\frac{1}{17053232701} a^{28} - \frac{133596600}{17053232701} a^{21} - \frac{6742221803}{17053232701} a^{14} - \frac{6597075107}{17053232701} a^{7} + \frac{7611643532}{17053232701}$, $\frac{1}{17053232701} a^{29} - \frac{133596600}{17053232701} a^{22} - \frac{6742221803}{17053232701} a^{15} - \frac{6597075107}{17053232701} a^{8} + \frac{7611643532}{17053232701} a$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{10}$, which has order $80$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{1163304351}{17053232701} a^{29} - \frac{2326608702}{17053232701} a^{28} + \frac{6592057989}{17053232701} a^{27} - \frac{12408579744}{17053232701} a^{26} + \frac{28308339807}{17053232701} a^{25} - \frac{52348695795}{17053232701} a^{24} + \frac{110901681462}{17053232701} a^{23} - \frac{130290087312}{17053232701} a^{22} + \frac{269886609432}{17053232701} a^{21} - \frac{354420058938}{17053232701} a^{20} + \frac{762739886139}{17053232701} a^{19} - \frac{1090709287228}{17053232701} a^{18} + \frac{2399121339879}{17053232701} a^{17} - \frac{3680694966564}{17053232701} a^{16} + \frac{4239081055044}{17053232701} a^{15} - \frac{5422937116245}{17053232701} a^{14} + \frac{6507912307611}{17053232701} a^{13} - \frac{6839454047646}{17053232701} a^{12} + \frac{7561641206675}{17053232701} a^{11} - \frac{3370092704847}{17053232701} a^{10} - \frac{986094321531}{17053232701} a^{9} - \frac{2874137283204}{17053232701} a^{8} + \frac{49246550859}{17053232701} a^{7} - \frac{2930363660169}{17053232701} a^{6} + \frac{833313683433}{17053232701} a^{5} - \frac{2834616310174}{17053232701} a^{4} + \frac{67083884241}{17053232701} a^{3} - \frac{19388405850}{17053232701} a^{2} + \frac{5040985521}{17053232701} a - \frac{1551072468}{17053232701} \) (order $14$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4697581952.048968 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 30 |
| The 30 conjugacy class representatives for $C_{30}$ |
| Character table for $C_{30}$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-7}) \), \(\Q(\zeta_{7})^+\), \(\Q(\zeta_{11})^+\), \(\Q(\zeta_{7})\), 10.0.3602729712967.1, 15.15.886528337182930278529.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $15^{2}$ | $30$ | $30$ | R | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{3}$ | $30$ | $30$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{10}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{6}$ | $30$ | $15^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{3}$ | ${\href{/LocalNumberField/43.1.0.1}{1} }^{30}$ | $30$ | $15^{2}$ | $30$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 7 | Data not computed | ||||||
| $11$ | 11.15.12.1 | $x^{15} + 165 x^{10} + 5324 x^{5} + 323433$ | $5$ | $3$ | $12$ | $C_{15}$ | $[\ ]_{5}^{3}$ |
| 11.15.12.1 | $x^{15} + 165 x^{10} + 5324 x^{5} + 323433$ | $5$ | $3$ | $12$ | $C_{15}$ | $[\ ]_{5}^{3}$ | |