Normalized defining polynomial
\( x^{30} + 54 x^{28} + 1233 x^{26} + 15576 x^{24} + 119634 x^{22} + 578880 x^{20} + 1774210 x^{18} + 3399342 x^{16} + 3980655 x^{14} + 2798498 x^{12} + 1189389 x^{10} + 305550 x^{8} + 46110 x^{6} + 3765 x^{4} + 135 x^{2} + 1 \)
Invariants
| Degree: | $30$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 15]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-128580320071219649477610441499385131775609876653277184=-\,2^{30}\cdot 3^{40}\cdot 11^{24}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $58.93$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(396=2^{2}\cdot 3^{2}\cdot 11\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{396}(1,·)$, $\chi_{396}(67,·)$, $\chi_{396}(97,·)$, $\chi_{396}(133,·)$, $\chi_{396}(199,·)$, $\chi_{396}(265,·)$, $\chi_{396}(331,·)$, $\chi_{396}(355,·)$, $\chi_{396}(235,·)$, $\chi_{396}(25,·)$, $\chi_{396}(91,·)$, $\chi_{396}(157,·)$, $\chi_{396}(31,·)$, $\chi_{396}(289,·)$, $\chi_{396}(163,·)$, $\chi_{396}(37,·)$, $\chi_{396}(295,·)$, $\chi_{396}(379,·)$, $\chi_{396}(169,·)$, $\chi_{396}(103,·)$, $\chi_{396}(301,·)$, $\chi_{396}(367,·)$, $\chi_{396}(229,·)$, $\chi_{396}(49,·)$, $\chi_{396}(115,·)$, $\chi_{396}(181,·)$, $\chi_{396}(361,·)$, $\chi_{396}(313,·)$, $\chi_{396}(223,·)$, $\chi_{396}(247,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $\frac{1}{109} a^{26} - \frac{15}{109} a^{24} + \frac{15}{109} a^{22} + \frac{49}{109} a^{20} + \frac{54}{109} a^{18} - \frac{19}{109} a^{16} + \frac{2}{109} a^{14} + \frac{9}{109} a^{12} - \frac{29}{109} a^{10} - \frac{41}{109} a^{8} + \frac{22}{109} a^{6} - \frac{28}{109} a^{4} + \frac{2}{109} a^{2} + \frac{3}{109}$, $\frac{1}{109} a^{27} - \frac{15}{109} a^{25} + \frac{15}{109} a^{23} + \frac{49}{109} a^{21} + \frac{54}{109} a^{19} - \frac{19}{109} a^{17} + \frac{2}{109} a^{15} + \frac{9}{109} a^{13} - \frac{29}{109} a^{11} - \frac{41}{109} a^{9} + \frac{22}{109} a^{7} - \frac{28}{109} a^{5} + \frac{2}{109} a^{3} + \frac{3}{109} a$, $\frac{1}{20469756790058585157336583} a^{28} - \frac{34572278632687996029752}{20469756790058585157336583} a^{26} + \frac{5600567293310221981624488}{20469756790058585157336583} a^{24} + \frac{9995868499639387490619561}{20469756790058585157336583} a^{22} - \frac{7452536763467663301093690}{20469756790058585157336583} a^{20} - \frac{8293010612449553670769619}{20469756790058585157336583} a^{18} + \frac{2257724728493536047787222}{20469756790058585157336583} a^{16} - \frac{164141650495050133016284}{20469756790058585157336583} a^{14} + \frac{4896578976157513160191002}{20469756790058585157336583} a^{12} - \frac{99880876764923358134437}{20469756790058585157336583} a^{10} + \frac{3770786365144958276585776}{20469756790058585157336583} a^{8} - \frac{8721738970238176741444724}{20469756790058585157336583} a^{6} + \frac{10144043949885991434295548}{20469756790058585157336583} a^{4} - \frac{2301635129904606018402975}{20469756790058585157336583} a^{2} - \frac{267434378538790360427201}{20469756790058585157336583}$, $\frac{1}{20469756790058585157336583} a^{29} - \frac{34572278632687996029752}{20469756790058585157336583} a^{27} + \frac{5600567293310221981624488}{20469756790058585157336583} a^{25} + \frac{9995868499639387490619561}{20469756790058585157336583} a^{23} - \frac{7452536763467663301093690}{20469756790058585157336583} a^{21} - \frac{8293010612449553670769619}{20469756790058585157336583} a^{19} + \frac{2257724728493536047787222}{20469756790058585157336583} a^{17} - \frac{164141650495050133016284}{20469756790058585157336583} a^{15} + \frac{4896578976157513160191002}{20469756790058585157336583} a^{13} - \frac{99880876764923358134437}{20469756790058585157336583} a^{11} + \frac{3770786365144958276585776}{20469756790058585157336583} a^{9} - \frac{8721738970238176741444724}{20469756790058585157336583} a^{7} + \frac{10144043949885991434295548}{20469756790058585157336583} a^{5} - \frac{2301635129904606018402975}{20469756790058585157336583} a^{3} - \frac{267434378538790360427201}{20469756790058585157336583} a$
Class group and class number
$C_{19231}$, which has order $19231$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{11340062264187261}{13582021966880203} a^{29} - \frac{607907297716553567}{13582021966880203} a^{27} - \frac{13742838082729367400}{13582021966880203} a^{25} - \frac{171201334936926036060}{13582021966880203} a^{23} - \frac{1288676355534596912938}{13582021966880203} a^{21} - \frac{6049322690772542026674}{13582021966880203} a^{19} - \frac{17675924983237737788580}{13582021966880203} a^{17} - \frac{31288695028267565504478}{13582021966880203} a^{15} - \frac{31920602521404356206692}{13582021966880203} a^{13} - \frac{17531623726854618720627}{13582021966880203} a^{11} - \frac{4859609699009417524696}{13582021966880203} a^{9} - \frac{544374694989261541302}{13582021966880203} a^{7} + \frac{10380630056743394109}{13582021966880203} a^{5} + \frac{5388374271851591333}{13582021966880203} a^{3} + \frac{188595294201069804}{13582021966880203} a \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 15853905121.091976 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 30 |
| The 30 conjugacy class representatives for $C_{30}$ |
| Character table for $C_{30}$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-1}) \), \(\Q(\zeta_{9})^+\), \(\Q(\zeta_{11})^+\), 6.0.419904.1, 10.0.219503494144.1, 15.15.10943023107606534329121.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | $15^{2}$ | $30$ | R | $15^{2}$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{6}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{3}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{5}$ | $15^{2}$ | $30$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{6}$ | $15^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{5}$ | $30$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{6}$ | $30$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| 11 | Data not computed | ||||||