// Magma code for working with number field 30.0.1097586964004374803146658147777020931243896484375.1 // (Note that not all these functions may be available, and some may take a long time to execute.) // Define the number field: R := PolynomialRing(Rationals()); K := NumberField(R![52081, 127306, -21588, -1190713, 2213182, -444980, -1731374, 2068027, -1489368, 384577, 1765791, -2148173, 993639, -348911, -29816, 79835, 184757, -443551, 515389, -424231, 288975, -166828, 82734, -35106, 12894, -4108, 1124, -257, 48, -7, 1]); // Defining polynomial: DefiningPolynomial(K); // Degree over Q: Degree(K); // Signature: Signature(K); // Discriminant: Discriminant(Integers(K)); // Ramified primes: PrimeDivisors(Discriminant(Integers(K))); // Integral basis: IntegralBasis(K); // Class group: ClassGroup(K); // Unit group: UK, f := UnitGroup(K); // Unit rank: UnitRank(K); // Generator for roots of unity: K!f(TU.1) where TU,f is TorsionUnitGroup(K); // Fundamental units: [K!f(g): g in Generators(UK)]; // Regulator: Regulator(K); // Galois group: GaloisGroup(K); // Frobenius cycle types: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$: idealfactors := Factorization(p*Integers(K)); // get the data [ : primefactor in idealfactors];