Normalized defining polynomial
\( x^{30} - 15 x^{27} + 850 x^{24} + 13165 x^{21} + 361380 x^{18} + 1208974 x^{15} + 4103510 x^{12} - 1555150 x^{9} + 670505 x^{6} - 820 x^{3} + 1 \)
Invariants
| Degree: | $30$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 15]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-10495827164017277150673379537693108431994915008544921875=-\,3^{45}\cdot 5^{48}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $68.24$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(225=3^{2}\cdot 5^{2}\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{225}(1,·)$, $\chi_{225}(131,·)$, $\chi_{225}(196,·)$, $\chi_{225}(71,·)$, $\chi_{225}(136,·)$, $\chi_{225}(11,·)$, $\chi_{225}(76,·)$, $\chi_{225}(206,·)$, $\chi_{225}(16,·)$, $\chi_{225}(146,·)$, $\chi_{225}(211,·)$, $\chi_{225}(86,·)$, $\chi_{225}(151,·)$, $\chi_{225}(26,·)$, $\chi_{225}(91,·)$, $\chi_{225}(221,·)$, $\chi_{225}(31,·)$, $\chi_{225}(161,·)$, $\chi_{225}(101,·)$, $\chi_{225}(166,·)$, $\chi_{225}(41,·)$, $\chi_{225}(106,·)$, $\chi_{225}(46,·)$, $\chi_{225}(176,·)$, $\chi_{225}(116,·)$, $\chi_{225}(181,·)$, $\chi_{225}(56,·)$, $\chi_{225}(121,·)$, $\chi_{225}(61,·)$, $\chi_{225}(191,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{7} a^{12} + \frac{1}{7} a^{6} + \frac{1}{7}$, $\frac{1}{7} a^{13} + \frac{1}{7} a^{7} + \frac{1}{7} a$, $\frac{1}{7} a^{14} + \frac{1}{7} a^{8} + \frac{1}{7} a^{2}$, $\frac{1}{7} a^{15} + \frac{1}{7} a^{9} + \frac{1}{7} a^{3}$, $\frac{1}{7} a^{16} + \frac{1}{7} a^{10} + \frac{1}{7} a^{4}$, $\frac{1}{7} a^{17} + \frac{1}{7} a^{11} + \frac{1}{7} a^{5}$, $\frac{1}{7} a^{18} - \frac{1}{7}$, $\frac{1}{7} a^{19} - \frac{1}{7} a$, $\frac{1}{7} a^{20} - \frac{1}{7} a^{2}$, $\frac{1}{7} a^{21} - \frac{1}{7} a^{3}$, $\frac{1}{7} a^{22} - \frac{1}{7} a^{4}$, $\frac{1}{7} a^{23} - \frac{1}{7} a^{5}$, $\frac{1}{1530907} a^{24} + \frac{2994}{218701} a^{21} - \frac{95044}{1530907} a^{18} - \frac{4303}{218701} a^{15} + \frac{554}{9751} a^{12} - \frac{33990}{218701} a^{9} + \frac{25286}{1530907} a^{6} + \frac{26492}{218701} a^{3} + \frac{476708}{1530907}$, $\frac{1}{1530907} a^{25} + \frac{2994}{218701} a^{22} - \frac{95044}{1530907} a^{19} - \frac{4303}{218701} a^{16} + \frac{554}{9751} a^{13} - \frac{33990}{218701} a^{10} + \frac{25286}{1530907} a^{7} + \frac{26492}{218701} a^{4} + \frac{476708}{1530907} a$, $\frac{1}{1530907} a^{26} + \frac{2994}{218701} a^{23} - \frac{95044}{1530907} a^{20} - \frac{4303}{218701} a^{17} + \frac{554}{9751} a^{14} - \frac{33990}{218701} a^{11} + \frac{25286}{1530907} a^{8} + \frac{26492}{218701} a^{5} + \frac{476708}{1530907} a^{2}$, $\frac{1}{1386296242742438692504366093} a^{27} + \frac{25839207799662200753}{198042320391776956072052299} a^{24} - \frac{76800525431980296212847306}{1386296242742438692504366093} a^{21} + \frac{9874110840781584924434926}{198042320391776956072052299} a^{18} + \frac{4322164493317961997116203}{1386296242742438692504366093} a^{15} + \frac{11947669440043090324057698}{198042320391776956072052299} a^{12} + \frac{86618278913860980725668385}{1386296242742438692504366093} a^{9} + \frac{22492269422920273528587549}{198042320391776956072052299} a^{6} + \frac{129351915236563585730714404}{1386296242742438692504366093} a^{3} + \frac{25049776656422499942044942}{198042320391776956072052299}$, $\frac{1}{1386296242742438692504366093} a^{28} + \frac{25839207799662200753}{198042320391776956072052299} a^{25} - \frac{76800525431980296212847306}{1386296242742438692504366093} a^{22} + \frac{9874110840781584924434926}{198042320391776956072052299} a^{19} + \frac{4322164493317961997116203}{1386296242742438692504366093} a^{16} + \frac{11947669440043090324057698}{198042320391776956072052299} a^{13} + \frac{86618278913860980725668385}{1386296242742438692504366093} a^{10} + \frac{22492269422920273528587549}{198042320391776956072052299} a^{7} + \frac{129351915236563585730714404}{1386296242742438692504366093} a^{4} + \frac{25049776656422499942044942}{198042320391776956072052299} a$, $\frac{1}{1386296242742438692504366093} a^{29} + \frac{25839207799662200753}{198042320391776956072052299} a^{26} - \frac{76800525431980296212847306}{1386296242742438692504366093} a^{23} + \frac{9874110840781584924434926}{198042320391776956072052299} a^{20} + \frac{4322164493317961997116203}{1386296242742438692504366093} a^{17} + \frac{11947669440043090324057698}{198042320391776956072052299} a^{14} + \frac{86618278913860980725668385}{1386296242742438692504366093} a^{11} + \frac{22492269422920273528587549}{198042320391776956072052299} a^{8} + \frac{129351915236563585730714404}{1386296242742438692504366093} a^{5} + \frac{25049776656422499942044942}{198042320391776956072052299} a^{2}$
Class group and class number
$C_{3641}$, which has order $3641$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{148248976519146198942551125}{1386296242742438692504366093} a^{29} + \frac{317675954960175014841890835}{198042320391776956072052299} a^{26} - \frac{126011586872750921645367842390}{1386296242742438692504366093} a^{23} - \frac{278814325074580350522364281451}{198042320391776956072052299} a^{20} - \frac{53574255225438895825289073358465}{1386296242742438692504366093} a^{17} - \frac{25604320847243540531889400997250}{198042320391776956072052299} a^{14} - \frac{608345203718322207803827803644090}{1386296242742438692504366093} a^{11} + \frac{32933660986169431170986149895110}{198042320391776956072052299} a^{8} - \frac{99402335352361051203938763690093}{1386296242742438692504366093} a^{5} + \frac{17366423173342244910048040640}{198042320391776956072052299} a^{2} \) (order $18$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1819602443243.4526 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 30 |
| The 30 conjugacy class representatives for $C_{30}$ |
| Character table for $C_{30}$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-3}) \), \(\Q(\zeta_{9})^+\), 5.5.390625.1, \(\Q(\zeta_{9})\), 10.0.37078857421875.1, 15.15.207828545629978179931640625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $30$ | R | R | ${\href{/LocalNumberField/7.3.0.1}{3} }^{10}$ | $30$ | $15^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{3}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{6}$ | $30$ | $30$ | $15^{2}$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{6}$ | $30$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{10}$ | $30$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{3}$ | $30$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| 5 | Data not computed | ||||||