Normalized defining polynomial
\( x^{30} - x^{29} + 3 x^{28} - 4 x^{27} + 9 x^{26} - 14 x^{25} + 28 x^{24} - 47 x^{23} + 89 x^{22} - 155 x^{21} + 286 x^{20} + 132 x^{19} + 285 x^{18} + 265 x^{17} + 437 x^{16} + 378 x^{15} + 761 x^{14} + 432 x^{13} + 1468 x^{12} + 157 x^{11} + 3211 x^{10} - 1429 x^{9} + 636 x^{8} - 283 x^{7} + 126 x^{6} - 56 x^{5} + 25 x^{4} - 11 x^{3} + 5 x^{2} - 2 x + 1 \)
Invariants
Degree: | $30$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
| |
Signature: | $[0, 15]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
| |
Discriminant: | \(-1046076147688308987260717152173116396995512371\)\(\medspace = -\,7^{20}\cdot 11^{27}\) | sage: K.disc()
gp: K.disc
magma: Discriminant(Integers(K));
| |
Root discriminant: | $31.67$ | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
| |
Ramified primes: | $7, 11$ | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(Integers(K)));
| |
$|\Gal(K/\Q)|$: | $30$ | ||
This field is Galois and abelian over $\Q$. | |||
Conductor: | \(77=7\cdot 11\) | ||
Dirichlet character group: | $\lbrace$$\chi_{77}(64,·)$, $\chi_{77}(1,·)$, $\chi_{77}(2,·)$, $\chi_{77}(67,·)$, $\chi_{77}(4,·)$, $\chi_{77}(65,·)$, $\chi_{77}(8,·)$, $\chi_{77}(9,·)$, $\chi_{77}(74,·)$, $\chi_{77}(15,·)$, $\chi_{77}(16,·)$, $\chi_{77}(18,·)$, $\chi_{77}(23,·)$, $\chi_{77}(25,·)$, $\chi_{77}(71,·)$, $\chi_{77}(29,·)$, $\chi_{77}(30,·)$, $\chi_{77}(32,·)$, $\chi_{77}(36,·)$, $\chi_{77}(37,·)$, $\chi_{77}(39,·)$, $\chi_{77}(43,·)$, $\chi_{77}(46,·)$, $\chi_{77}(72,·)$, $\chi_{77}(50,·)$, $\chi_{77}(51,·)$, $\chi_{77}(53,·)$, $\chi_{77}(57,·)$, $\chi_{77}(58,·)$, $\chi_{77}(60,·)$$\rbrace$ | ||
This is a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $\frac{1}{696851} a^{21} - \frac{332692}{696851} a^{20} + \frac{335130}{696851} a^{19} - \frac{303662}{696851} a^{18} - \frac{55621}{696851} a^{17} - \frac{216573}{696851} a^{16} - \frac{198331}{696851} a^{15} - \frac{290436}{696851} a^{14} - \frac{322799}{696851} a^{13} + \frac{240447}{696851} a^{12} + \frac{217221}{696851} a^{11} + \frac{319182}{696851} a^{10} + \frac{341691}{696851} a^{9} + \frac{138309}{696851} a^{8} + \frac{167404}{696851} a^{7} - \frac{245946}{696851} a^{6} + \frac{22212}{696851} a^{5} - \frac{346700}{696851} a^{4} + \frac{145178}{696851} a^{3} - \frac{119515}{696851} a^{2} + \frac{63171}{696851} a - \frac{157023}{696851}$, $\frac{1}{696851} a^{22} - \frac{318543}{696851} a^{11} - \frac{163850}{696851}$, $\frac{1}{696851} a^{23} - \frac{318543}{696851} a^{12} - \frac{163850}{696851} a$, $\frac{1}{696851} a^{24} - \frac{318543}{696851} a^{13} - \frac{163850}{696851} a^{2}$, $\frac{1}{696851} a^{25} - \frac{318543}{696851} a^{14} - \frac{163850}{696851} a^{3}$, $\frac{1}{696851} a^{26} - \frac{318543}{696851} a^{15} - \frac{163850}{696851} a^{4}$, $\frac{1}{696851} a^{27} - \frac{318543}{696851} a^{16} - \frac{163850}{696851} a^{5}$, $\frac{1}{696851} a^{28} - \frac{318543}{696851} a^{17} - \frac{163850}{696851} a^{6}$, $\frac{1}{696851} a^{29} - \frac{318543}{696851} a^{18} - \frac{163850}{696851} a^{7}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{2}$, which has order $16$ (assuming GRH)
Unit group
Rank: | $14$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
| |
Torsion generator: | \( -\frac{310114}{696851} a^{29} + \frac{310114}{696851} a^{28} - \frac{930342}{696851} a^{27} + \frac{1240456}{696851} a^{26} - \frac{2791026}{696851} a^{25} + \frac{4341596}{696851} a^{24} - \frac{8683192}{696851} a^{23} + \frac{14575358}{696851} a^{22} - \frac{27600301}{696851} a^{21} + \frac{48067670}{696851} a^{20} - \frac{88692604}{696851} a^{19} - \frac{40935048}{696851} a^{18} - \frac{88382490}{696851} a^{17} - \frac{82180210}{696851} a^{16} - \frac{135519818}{696851} a^{15} - \frac{117223092}{696851} a^{14} - \frac{235996754}{696851} a^{13} - \frac{133969248}{696851} a^{12} - \frac{455247352}{696851} a^{11} - \frac{48790154}{696851} a^{10} - \frac{995776054}{696851} a^{9} + \frac{443152906}{696851} a^{8} - \frac{197232504}{696851} a^{7} + \frac{87762262}{696851} a^{6} - \frac{39074364}{696851} a^{5} + \frac{17366384}{696851} a^{4} - \frac{7752850}{696851} a^{3} + \frac{3411254}{696851} a^{2} - \frac{1550570}{696851} a + \frac{620228}{696851} \) (order $22$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
| |
Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K!f(g): g in Generators(UK)];
| |
Regulator: | \( 4697581952.048968 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
|
Class number formula
Galois group
A cyclic group of order 30 |
The 30 conjugacy class representatives for $C_{30}$ |
Character table for $C_{30}$ is not computed |
Intermediate fields
\(\Q(\sqrt{-11}) \), \(\Q(\zeta_{7})^+\), \(\Q(\zeta_{11})^+\), 6.0.3195731.1, \(\Q(\zeta_{11})\), 15.15.886528337182930278529.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | $30$ | $15^{2}$ | $15^{2}$ | R | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{3}$ | $30$ | $30$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{10}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{3}$ | $15^{2}$ | $15^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{3}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{15}$ | $15^{2}$ | $15^{2}$ | $15^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
7 | Data not computed | ||||||
11 | Data not computed |