Normalized defining polynomial
sage: x = polygen(QQ); K.<a> = NumberField(x^3 - 57*x - 152)
gp: K = bnfinit(x^3 - 57*x - 152, 1)
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-152, -57, 0, 1]);
\( x^{3} - 57x - 152 \)
sage: K.defining_polynomial()
gp: K.pol
magma: DefiningPolynomial(K);
Invariants
Degree: | $3$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
| |
Signature: | $[3, 0]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
| |
Discriminant: |
\(29241\)
\(\medspace = 3^{4}\cdot 19^{2}\)
| sage: K.disc()
gp: K.disc
magma: Discriminant(Integers(K));
| |
Root discriminant: | \(30.81\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
| |
Ramified primes: |
\(3\), \(19\)
| sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(Integers(K)));
| |
$\card{ \Gal(K/\Q) }$: | $3$ | ||
This field is Galois and abelian over $\Q$. | |||
Conductor: | \(171=3^{2}\cdot 19\) | ||
Dirichlet character group: | $\lbrace$$\chi_{171}(1,·)$, $\chi_{171}(49,·)$, $\chi_{171}(7,·)$$\rbrace$ | ||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2}a^{2}-\frac{1}{2}a$
sage: K.integral_basis()
gp: K.zk
magma: IntegralBasis(K);
Monogenic: | No | |
Index: | $2$ | |
Inessential primes: | $2$ |
Class group and class number
$C_{3}$, which has order $3$
sage: K.class_group().invariants()
gp: K.clgp
magma: ClassGroup(K);
Unit group
sage: UK = K.unit_group()
magma: UK, f := UnitGroup(K);
Rank: | $2$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
| |
Torsion generator: |
\( -1 \)
(order $2$)
| sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
| |
Fundamental units: |
$11a^{2}-59a-311$, $13a^{2}-43a-601$
| sage: UK.fundamental_units()
gp: K.fu
magma: [K!f(g): g in Generators(UK)];
| |
Regulator: | \( 39.6683040644 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
|
Class number formula
Galois group
sage: K.galois_group(type='pari')
gp: polgalois(K.pol)
magma: GaloisGroup(K);
A cyclic group of order 3 |
The 3 conjugacy class representatives for $C_3$ |
Character table for $C_3$ |
Intermediate fields
The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | ${\href{/padicField/2.1.0.1}{1} }^{3}$ | R | ${\href{/padicField/5.3.0.1}{3} }$ | ${\href{/padicField/7.3.0.1}{3} }$ | ${\href{/padicField/11.3.0.1}{3} }$ | ${\href{/padicField/13.1.0.1}{1} }^{3}$ | ${\href{/padicField/17.3.0.1}{3} }$ | R | ${\href{/padicField/23.1.0.1}{1} }^{3}$ | ${\href{/padicField/29.3.0.1}{3} }$ | ${\href{/padicField/31.3.0.1}{3} }$ | ${\href{/padicField/37.1.0.1}{1} }^{3}$ | ${\href{/padicField/41.3.0.1}{3} }$ | ${\href{/padicField/43.1.0.1}{1} }^{3}$ | ${\href{/padicField/47.3.0.1}{3} }$ | ${\href{/padicField/53.3.0.1}{3} }$ | ${\href{/padicField/59.3.0.1}{3} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
gp: idealfactors = idealprimedec(K, p); \\ get the data
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
magma: idealfactors := Factorization(p*Integers(K)); // get the data
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(3\)
| 3.3.4.3 | $x^{3} - 3 x^{2} + 12$ | $3$ | $1$ | $4$ | $C_3$ | $[2]$ |
\(19\)
| 19.3.2.2 | $x^{3} - 19$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
Artin representations
Label | Dimension | Conductor | Artin stem field | $G$ | Ind | $\chi(c)$ | |
---|---|---|---|---|---|---|---|
* | 1.1.1t1.a.a | $1$ | $1$ | \(\Q\) | $C_1$ | $1$ | $1$ |
* | 1.171.3t1.a.a | $1$ | $ 3^{2} \cdot 19 $ | 3.3.29241.1 | $C_3$ (as 3T1) | $0$ | $1$ |
* | 1.171.3t1.a.b | $1$ | $ 3^{2} \cdot 19 $ | 3.3.29241.1 | $C_3$ (as 3T1) | $0$ | $1$ |
Data is given for all irreducible
representations of the Galois group for the Galois closure
of this field. Those marked with * are summands in the
permutation representation coming from this field. Representations
which appear with multiplicity greater than one are indicated
by exponents on the *.