# Properties

 Label 3.3.29241.1 Degree $3$ Signature $[3, 0]$ Discriminant $29241$ Root discriminant $$30.81$$ Ramified primes see page Class number $3$ Class group $[3]$ Galois group $C_3$ (as 3T1)

# Related objects

Show commands: SageMath / Pari/GP / Magma

## Normalizeddefining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^3 - 57*x - 152)

gp: K = bnfinit(x^3 - 57*x - 152, 1)

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-152, -57, 0, 1]);

$$x^{3} - 57x - 152$$

sage: K.defining_polynomial()

gp: K.pol

magma: DefiningPolynomial(K);

## Invariants

 Degree: $3$ sage: K.degree()  gp: poldegree(K.pol)  magma: Degree(K); Signature: $[3, 0]$ sage: K.signature()  gp: K.sign  magma: Signature(K); Discriminant: $$29241$$ 29241 $$\medspace = 3^{4}\cdot 19^{2}$$ sage: K.disc()  gp: K.disc  magma: Discriminant(Integers(K)); Root discriminant: $$30.81$$ sage: (K.disc().abs())^(1./K.degree())  gp: abs(K.disc)^(1/poldegree(K.pol))  magma: Abs(Discriminant(Integers(K)))^(1/Degree(K)); Ramified primes: $$3$$, $$19$$ 3, 19 sage: K.disc().support()  gp: factor(abs(K.disc))[,1]~  magma: PrimeDivisors(Discriminant(Integers(K))); $\card{ \Gal(K/\Q) }$: $3$ This field is Galois and abelian over $\Q$. Conductor: $$171=3^{2}\cdot 19$$ Dirichlet character group: $\lbrace$$\chi_{171}(1,·), \chi_{171}(49,·), \chi_{171}(7,·)$$\rbrace$ This is not a CM field.

## Integral basis (with respect to field generator $$a$$)

$1$, $a$, $\frac{1}{2}a^{2}-\frac{1}{2}a$

sage: K.integral_basis()

gp: K.zk

magma: IntegralBasis(K);

 Monogenic: No Index: $2$ Inessential primes: $2$

## Class group and class number

$C_{3}$, which has order $3$

sage: K.class_group().invariants()

gp: K.clgp

magma: ClassGroup(K);

## Unit group

sage: UK = K.unit_group()

magma: UK, f := UnitGroup(K);

 Rank: $2$ sage: UK.rank()  gp: K.fu  magma: UnitRank(K); Torsion generator: $$-1$$ -1  (order $2$) sage: UK.torsion_generator()  gp: K.tu[2]  magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K); Fundamental units: $11a^{2}-59a-311$, $13a^{2}-43a-601$ 11*a^2 - 59*a - 311, 13*a^2 - 43*a - 601 sage: UK.fundamental_units()  gp: K.fu  magma: [K!f(g): g in Generators(UK)]; Regulator: $$39.6683040644$$ sage: K.regulator()  gp: K.reg  magma: Regulator(K);

## Class number formula

$\displaystyle\lim_{s\to 1} (s-1)\zeta_K(s) \approx\frac{2^{3}\cdot(2\pi)^{0}\cdot 39.6683040644 \cdot 3}{2\sqrt{29241}}\approx 2.78374063610$

## Galois group

$C_3$ (as 3T1):

sage: K.galois_group(type='pari')

gp: polgalois(K.pol)

magma: GaloisGroup(K);

 A cyclic group of order 3 The 3 conjugacy class representatives for $C_3$ Character table for $C_3$

## Intermediate fields

 The extension is primitive: there are no intermediate fields between this field and $\Q$.

## Frobenius cycle types

 $p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$ Cycle type ${\href{/padicField/2.1.0.1}{1} }^{3}$ R ${\href{/padicField/5.3.0.1}{3} }$ ${\href{/padicField/7.3.0.1}{3} }$ ${\href{/padicField/11.3.0.1}{3} }$ ${\href{/padicField/13.1.0.1}{1} }^{3}$ ${\href{/padicField/17.3.0.1}{3} }$ R ${\href{/padicField/23.1.0.1}{1} }^{3}$ ${\href{/padicField/29.3.0.1}{3} }$ ${\href{/padicField/31.3.0.1}{3} }$ ${\href{/padicField/37.1.0.1}{1} }^{3}$ ${\href{/padicField/41.3.0.1}{3} }$ ${\href{/padicField/43.1.0.1}{1} }^{3}$ ${\href{/padicField/47.3.0.1}{3} }$ ${\href{/padicField/53.3.0.1}{3} }$ ${\href{/padicField/59.3.0.1}{3} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:

sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]

gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:

gp: idealfactors = idealprimedec(K, p); \\ get the data

gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:

magma: idealfactors := Factorization(p*Integers(K)); // get the data

magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];

## Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$$3$$ 3.3.4.3$x^{3} - 3 x^{2} + 12$$3$$1$$4$$C_3$$[2] $$19$$ 19.3.2.2x^{3} - 19$$3$$1$$2$$C_3$$[\ ]_{3}$

## Artin representations

Label Dimension Conductor Artin stem field $G$ Ind $\chi(c)$
* 1.1.1t1.a.a$1$ $1$ $$\Q$$ $C_1$ $1$ $1$
* 1.171.3t1.a.a$1$ $3^{2} \cdot 19$ 3.3.29241.1 $C_3$ (as 3T1) $0$ $1$
* 1.171.3t1.a.b$1$ $3^{2} \cdot 19$ 3.3.29241.1 $C_3$ (as 3T1) $0$ $1$

Data is given for all irreducible representations of the Galois group for the Galois closure of this field. Those marked with * are summands in the permutation representation coming from this field. Representations which appear with multiplicity greater than one are indicated by exponents on the *.