Normalized defining polynomial
\( x^{3} - 39x - 26 \)
Invariants
Degree: | $3$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[3, 0]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: |
\(13689\)
\(\medspace = 3^{4}\cdot 13^{2}\)
| sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(23.92\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $3^{4/3}13^{2/3}\approx 23.921619298064325$ | ||
Ramified primes: |
\(3\), \(13\)
| sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q\) | ||
$\card{ \Gal(K/\Q) }$: | $3$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is Galois and abelian over $\Q$. | |||
Conductor: | \(117=3^{2}\cdot 13\) | ||
Dirichlet character group: | $\lbrace$$\chi_{117}(16,·)$, $\chi_{117}(1,·)$, $\chi_{117}(22,·)$$\rbrace$ | ||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{4}a^{2}+\frac{1}{4}a-\frac{1}{2}$
Monogenic: | No | |
Index: | $2$ | |
Inessential primes: | $2$ |
Class group and class number
$C_{3}$, which has order $3$
Unit group
Rank: | $2$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: |
\( -1 \)
(order $2$)
| sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: |
$\frac{7}{2}a^{2}-\frac{5}{2}a-134$, $\frac{3}{2}a^{2}+\frac{19}{2}a+4$
| sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 26.7030363203 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{3}\cdot(2\pi)^{0}\cdot 26.7030363203 \cdot 3}{2\cdot\sqrt{13689}}\cr\approx \mathstrut & 2.73877295593 \end{aligned}\]
Galois group
A cyclic group of order 3 |
The 3 conjugacy class representatives for $C_3$ |
Character table for $C_3$ |
Intermediate fields
The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | ${\href{/padicField/2.1.0.1}{1} }^{3}$ | R | ${\href{/padicField/5.3.0.1}{3} }$ | ${\href{/padicField/7.3.0.1}{3} }$ | ${\href{/padicField/11.1.0.1}{1} }^{3}$ | R | ${\href{/padicField/17.3.0.1}{3} }$ | ${\href{/padicField/19.3.0.1}{3} }$ | ${\href{/padicField/23.3.0.1}{3} }$ | ${\href{/padicField/29.1.0.1}{1} }^{3}$ | ${\href{/padicField/31.3.0.1}{3} }$ | ${\href{/padicField/37.3.0.1}{3} }$ | ${\href{/padicField/41.3.0.1}{3} }$ | ${\href{/padicField/43.3.0.1}{3} }$ | ${\href{/padicField/47.3.0.1}{3} }$ | ${\href{/padicField/53.1.0.1}{1} }^{3}$ | ${\href{/padicField/59.1.0.1}{1} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(3\)
| 3.3.4.3 | $x^{3} + 6 x^{2} + 12$ | $3$ | $1$ | $4$ | $C_3$ | $[2]$ |
\(13\)
| 13.3.2.1 | $x^{3} + 26$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
Artin representations
Label | Dimension | Conductor | Artin stem field | $G$ | Ind | $\chi(c)$ | |
---|---|---|---|---|---|---|---|
* | 1.1.1t1.a.a | $1$ | $1$ | \(\Q\) | $C_1$ | $1$ | $1$ |
* | 1.117.3t1.b.a | $1$ | $ 3^{2} \cdot 13 $ | 3.3.13689.1 | $C_3$ (as 3T1) | $0$ | $1$ |
* | 1.117.3t1.b.b | $1$ | $ 3^{2} \cdot 13 $ | 3.3.13689.1 | $C_3$ (as 3T1) | $0$ | $1$ |