Normalized defining polynomial
\( x^{3} - x^{2} - 2x + 48 \)
Invariants
| Degree: | $3$ |
| |
| Signature: | $[1, 1]$ |
| |
| Discriminant: |
\(-15063\)
\(\medspace = -\,3\cdot 5021\)
|
| |
| Root discriminant: | \(24.70\) |
| |
| Galois root discriminant: | $3^{1/2}5021^{1/2}\approx 122.73141407154078$ | ||
| Ramified primes: |
\(3\), \(5021\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{-15063}) \) | ||
| $\Aut(K/\Q)$: | $C_1$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2}a^{2}-\frac{1}{2}a$
| Monogenic: | No | |
| Index: | $2$ | |
| Inessential primes: | $2$ |
Class group and class number
| Ideal class group: | $C_{17}$, which has order $17$ |
| |
| Narrow class group: | $C_{17}$, which has order $17$ |
|
Unit group
| Rank: | $1$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental unit: |
$2a+7$
|
| |
| Regulator: | \( 5.11716830786 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{1}\cdot(2\pi)^{1}\cdot 5.11716830786 \cdot 17}{2\cdot\sqrt{15063}}\cr\approx \mathstrut & 4.45351329553 \end{aligned}\]
Galois group
| A solvable group of order 6 |
| The 3 conjugacy class representatives for $S_3$ |
| Character table for $S_3$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
| Galois closure: | 6.0.3417703855047.1 |
| Minimal sibling: | This field is its own minimal sibling |
Multiplicative Galois module structure
| $U_{K^{gal}}/\textrm{Tors}(U_{K^{gal}}) \cong$ $A$ |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/padicField/2.1.0.1}{1} }^{3}$ | R | ${\href{/padicField/5.2.0.1}{2} }{,}\,{\href{/padicField/5.1.0.1}{1} }$ | ${\href{/padicField/7.3.0.1}{3} }$ | ${\href{/padicField/11.2.0.1}{2} }{,}\,{\href{/padicField/11.1.0.1}{1} }$ | ${\href{/padicField/13.3.0.1}{3} }$ | ${\href{/padicField/17.3.0.1}{3} }$ | ${\href{/padicField/19.3.0.1}{3} }$ | ${\href{/padicField/23.1.0.1}{1} }^{3}$ | ${\href{/padicField/29.2.0.1}{2} }{,}\,{\href{/padicField/29.1.0.1}{1} }$ | ${\href{/padicField/31.2.0.1}{2} }{,}\,{\href{/padicField/31.1.0.1}{1} }$ | ${\href{/padicField/37.3.0.1}{3} }$ | ${\href{/padicField/41.1.0.1}{1} }^{3}$ | ${\href{/padicField/43.2.0.1}{2} }{,}\,{\href{/padicField/43.1.0.1}{1} }$ | ${\href{/padicField/47.3.0.1}{3} }$ | ${\href{/padicField/53.3.0.1}{3} }$ | ${\href{/padicField/59.3.0.1}{3} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(3\)
| $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| 3.1.2.1a1.2 | $x^{2} + 6$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
|
\(5021\)
| $\Q_{5021}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |
Artin representations
| Label | Dimension | Conductor | Artin stem field | $G$ | Ind | $\chi(c)$ | |
|---|---|---|---|---|---|---|---|
| *6 | 1.1.1t1.a.a | $1$ | $1$ | \(\Q\) | $C_1$ | $1$ | $1$ |
| 1.15063.2t1.a.a | $1$ | $ 3 \cdot 5021 $ | \(\Q(\sqrt{-15063}) \) | $C_2$ (as 2T1) | $1$ | $-1$ | |
| *6 | 2.15063.3t2.a.a | $2$ | $ 3 \cdot 5021 $ | 3.1.15063.1 | $S_3$ (as 3T2) | $1$ | $0$ |
Data is given for all irreducible
representations of the Galois group for the Galois closure
of this field. Those marked with * are summands in the
permutation representation coming from this field. Representations
which appear with multiplicity greater than one are indicated
by exponents on the *.