# SageMath code for working with number field 29.29.158165571476523684791187605131317359442300677347381843010071500056545201.1 # Some of these functions may take a long time to execute (this depends on the field). # Define the number field: x = polygen(QQ); K. = NumberField(x^29 - x^28 - 168*x^27 + 353*x^26 + 11480*x^25 - 34328*x^24 - 410190*x^23 + 1556443*x^22 + 8267052*x^21 - 38827232*x^20 - 94788585*x^19 + 575669857*x^18 + 574148959*x^17 - 5286405734*x^16 - 1118675686*x^15 + 30698615326*x^14 - 6935797323*x^13 - 112817035992*x^12 + 51055206761*x^11 + 256367413593*x^10 - 136472035194*x^9 - 340428884896*x^8 + 170672875682*x^7 + 236550118296*x^6 - 94550319984*x^5 - 69592403677*x^4 + 18732474566*x^3 + 3480965541*x^2 - 875365500*x + 10242329) # Defining polynomial: K.defining_polynomial() # Degree over Q: K.degree() # Signature: K.signature() # Discriminant: K.disc() # Ramified primes: K.disc().support() # Autmorphisms: K.automorphisms() # Integral basis: K.integral_basis() # Class group: K.class_group().invariants() # Unit group: UK = K.unit_group() # Unit rank: UK.rank() # Generator for roots of unity: UK.torsion_generator() # Fundamental units: UK.fundamental_units() # Regulator: K.regulator() # Analytic class number formula: # self-contained SageMath code snippet to compute the analytic class number formula x = polygen(QQ); K. = NumberField(x^29 - x^28 - 168*x^27 + 353*x^26 + 11480*x^25 - 34328*x^24 - 410190*x^23 + 1556443*x^22 + 8267052*x^21 - 38827232*x^20 - 94788585*x^19 + 575669857*x^18 + 574148959*x^17 - 5286405734*x^16 - 1118675686*x^15 + 30698615326*x^14 - 6935797323*x^13 - 112817035992*x^12 + 51055206761*x^11 + 256367413593*x^10 - 136472035194*x^9 - 340428884896*x^8 + 170672875682*x^7 + 236550118296*x^6 - 94550319984*x^5 - 69592403677*x^4 + 18732474566*x^3 + 3480965541*x^2 - 875365500*x + 10242329) DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent() hK = K.class_number(); wK = K.unit_group().torsion_generator().order(); 2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK)))) # Intermediate fields: K.subfields()[1:-1] # Galois group: K.galois_group(type='pari') # Frobenius cycle types: # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage: p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]