# SageMath code for working with number field 29.29.13123427860740340635045684158089751314114754706664887333885491004189525894481.1 # Some of these functions may take a long time to execute (this depends on the field). # Define the number field: x = polygen(QQ); K. = NumberField(x^29 - x^28 - 252*x^27 + 493*x^26 + 26301*x^25 - 70613*x^24 - 1477005*x^23 + 4757585*x^22 + 49139083*x^21 - 176708296*x^20 - 1019533247*x^19 + 3897692875*x^18 + 13650905238*x^17 - 52791707208*x^16 - 121558760223*x^15 + 441031541121*x^14 + 744433170879*x^13 - 2221117761731*x^12 - 3198643328695*x^11 + 6333895042002*x^10 + 9161654939551*x^9 - 8623697894872*x^8 - 14867816867065*x^7 + 2648025494151*x^6 + 9891108006231*x^5 + 1898151784214*x^4 - 1956687026062*x^3 - 891062263511*x^2 - 130453149826*x - 6306528127) # Defining polynomial: K.defining_polynomial() # Degree over Q: K.degree() # Signature: K.signature() # Discriminant: K.disc() # Ramified primes: K.disc().support() # Autmorphisms: K.automorphisms() # Integral basis: K.integral_basis() # Class group: K.class_group().invariants() # Unit group: UK = K.unit_group() # Unit rank: UK.rank() # Generator for roots of unity: UK.torsion_generator() # Fundamental units: UK.fundamental_units() # Regulator: K.regulator() # Analytic class number formula: # self-contained SageMath code snippet to compute the analytic class number formula x = polygen(QQ); K. = NumberField(x^29 - x^28 - 252*x^27 + 493*x^26 + 26301*x^25 - 70613*x^24 - 1477005*x^23 + 4757585*x^22 + 49139083*x^21 - 176708296*x^20 - 1019533247*x^19 + 3897692875*x^18 + 13650905238*x^17 - 52791707208*x^16 - 121558760223*x^15 + 441031541121*x^14 + 744433170879*x^13 - 2221117761731*x^12 - 3198643328695*x^11 + 6333895042002*x^10 + 9161654939551*x^9 - 8623697894872*x^8 - 14867816867065*x^7 + 2648025494151*x^6 + 9891108006231*x^5 + 1898151784214*x^4 - 1956687026062*x^3 - 891062263511*x^2 - 130453149826*x - 6306528127) DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent() hK = K.class_number(); wK = K.unit_group().torsion_generator().order(); 2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK)))) # Intermediate fields: K.subfields()[1:-1] # Galois group: K.galois_group(type='pari') # Frobenius cycle types: # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage: p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]