Normalized defining polynomial
\( x^{29} - 9 x^{28} + 56 x^{27} - 308 x^{26} + 1574 x^{25} - 7243 x^{24} + 28966 x^{23} - 99448 x^{22} + 293090 x^{21} - 744900 x^{20} + 1641343 x^{19} - 3148829 x^{18} + 5274672 x^{17} - 7725970 x^{16} + 9897023 x^{15} - 11084677 x^{14} + 10859104 x^{13} - 9337717 x^{12} + 7122047 x^{11} - 4916951 x^{10} + 3150459 x^{9} - 1890622 x^{8} + 1028653 x^{7} - 470622 x^{6} + 165361 x^{5} - 41848 x^{4} + 8324 x^{3} - 1810 x^{2} + 323 x - 1 \)
Invariants
Degree: | $29$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
| |
Signature: | $[1, 14]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
| |
Discriminant: | \(75682241113219898520171301845005641468074963121\)\(\medspace = 23^{14}\cdot 97^{14}\) | sage: K.disc()
gp: K.disc
magma: Discriminant(Integers(K));
| |
Root discriminant: | $41.35$ | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
| |
Ramified primes: | $23, 97$ | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(Integers(K)));
| |
$|\Aut(K/\Q)|$: | $1$ | ||
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{23} a^{11} + \frac{8}{23} a^{10} + \frac{9}{23} a^{9} - \frac{4}{23} a^{8} + \frac{1}{23} a^{7} - \frac{1}{23} a^{6} - \frac{5}{23} a^{5} + \frac{10}{23} a^{4} - \frac{11}{23} a^{3} - \frac{8}{23} a^{2} - \frac{4}{23} a - \frac{1}{23}$, $\frac{1}{23} a^{12} - \frac{9}{23} a^{10} - \frac{7}{23} a^{9} + \frac{10}{23} a^{8} - \frac{9}{23} a^{7} + \frac{3}{23} a^{6} + \frac{4}{23} a^{5} + \frac{1}{23} a^{4} + \frac{11}{23} a^{3} - \frac{9}{23} a^{2} + \frac{8}{23} a + \frac{8}{23}$, $\frac{1}{23} a^{13} - \frac{4}{23} a^{10} - \frac{1}{23} a^{9} + \frac{1}{23} a^{8} - \frac{11}{23} a^{7} - \frac{5}{23} a^{6} + \frac{2}{23} a^{5} + \frac{9}{23} a^{4} + \frac{7}{23} a^{3} + \frac{5}{23} a^{2} - \frac{5}{23} a - \frac{9}{23}$, $\frac{1}{23} a^{14} + \frac{8}{23} a^{10} - \frac{9}{23} a^{9} - \frac{4}{23} a^{8} - \frac{1}{23} a^{7} - \frac{2}{23} a^{6} - \frac{11}{23} a^{5} + \frac{1}{23} a^{4} + \frac{7}{23} a^{3} + \frac{9}{23} a^{2} - \frac{2}{23} a - \frac{4}{23}$, $\frac{1}{23} a^{15} - \frac{4}{23} a^{10} - \frac{7}{23} a^{9} + \frac{8}{23} a^{8} - \frac{10}{23} a^{7} - \frac{3}{23} a^{6} - \frac{5}{23} a^{5} - \frac{4}{23} a^{4} + \frac{5}{23} a^{3} - \frac{7}{23} a^{2} + \frac{5}{23} a + \frac{8}{23}$, $\frac{1}{23} a^{16} + \frac{2}{23} a^{10} - \frac{2}{23} a^{9} - \frac{3}{23} a^{8} + \frac{1}{23} a^{7} - \frac{9}{23} a^{6} - \frac{1}{23} a^{5} - \frac{1}{23} a^{4} - \frac{5}{23} a^{3} - \frac{4}{23} a^{2} - \frac{8}{23} a - \frac{4}{23}$, $\frac{1}{23} a^{17} + \frac{5}{23} a^{10} + \frac{2}{23} a^{9} + \frac{9}{23} a^{8} - \frac{11}{23} a^{7} + \frac{1}{23} a^{6} + \frac{9}{23} a^{5} - \frac{2}{23} a^{4} - \frac{5}{23} a^{3} + \frac{8}{23} a^{2} + \frac{4}{23} a + \frac{2}{23}$, $\frac{1}{23} a^{18} + \frac{8}{23} a^{10} + \frac{10}{23} a^{9} + \frac{9}{23} a^{8} - \frac{4}{23} a^{7} - \frac{9}{23} a^{6} - \frac{9}{23} a^{4} - \frac{6}{23} a^{3} - \frac{2}{23} a^{2} - \frac{1}{23} a + \frac{5}{23}$, $\frac{1}{23} a^{19} - \frac{8}{23} a^{10} + \frac{6}{23} a^{9} + \frac{5}{23} a^{8} + \frac{6}{23} a^{7} + \frac{8}{23} a^{6} + \frac{8}{23} a^{5} + \frac{6}{23} a^{4} - \frac{6}{23} a^{3} - \frac{6}{23} a^{2} - \frac{9}{23} a + \frac{8}{23}$, $\frac{1}{299} a^{20} + \frac{3}{299} a^{19} - \frac{2}{299} a^{18} - \frac{1}{299} a^{17} - \frac{3}{299} a^{16} + \frac{1}{299} a^{15} - \frac{1}{299} a^{14} - \frac{3}{299} a^{13} + \frac{3}{299} a^{12} - \frac{5}{299} a^{11} - \frac{25}{299} a^{10} - \frac{120}{299} a^{9} - \frac{85}{299} a^{8} - \frac{50}{299} a^{7} + \frac{27}{299} a^{6} + \frac{90}{299} a^{5} + \frac{82}{299} a^{4} + \frac{54}{299} a^{3} - \frac{9}{299} a^{2} - \frac{147}{299} a + \frac{15}{299}$, $\frac{1}{299} a^{21} + \frac{2}{299} a^{19} + \frac{5}{299} a^{18} - \frac{3}{299} a^{16} - \frac{4}{299} a^{15} - \frac{1}{299} a^{13} - \frac{1}{299} a^{12} + \frac{3}{299} a^{11} - \frac{136}{299} a^{10} + \frac{119}{299} a^{9} + \frac{75}{299} a^{8} - \frac{18}{299} a^{7} + \frac{22}{299} a^{6} - \frac{110}{299} a^{5} - \frac{75}{299} a^{4} + \frac{24}{299} a^{3} - \frac{133}{299} a^{2} - \frac{38}{299} a + \frac{20}{299}$, $\frac{1}{6877} a^{22} - \frac{7}{6877} a^{21} - \frac{10}{6877} a^{20} - \frac{71}{6877} a^{19} - \frac{50}{6877} a^{18} + \frac{126}{6877} a^{17} - \frac{38}{6877} a^{16} + \frac{29}{6877} a^{15} + \frac{11}{6877} a^{14} + \frac{3}{6877} a^{13} - \frac{6}{529} a^{12} + \frac{2}{299} a^{11} - \frac{1996}{6877} a^{10} - \frac{1437}{6877} a^{9} - \frac{602}{6877} a^{8} + \frac{2672}{6877} a^{7} + \frac{2142}{6877} a^{6} + \frac{980}{6877} a^{5} - \frac{2099}{6877} a^{4} - \frac{142}{529} a^{3} + \frac{29}{529} a^{2} + \frac{399}{6877} a - \frac{2621}{6877}$, $\frac{1}{75647} a^{23} - \frac{2}{75647} a^{22} + \frac{1}{75647} a^{21} + \frac{109}{75647} a^{20} - \frac{40}{5819} a^{19} - \frac{5}{6877} a^{18} + \frac{1558}{75647} a^{17} - \frac{4}{3289} a^{16} - \frac{1293}{75647} a^{15} - \frac{1069}{75647} a^{14} + \frac{1294}{75647} a^{13} - \frac{298}{75647} a^{12} - \frac{386}{75647} a^{11} - \frac{4885}{75647} a^{10} - \frac{783}{5819} a^{9} - \frac{25109}{75647} a^{8} + \frac{22}{299} a^{7} + \frac{673}{75647} a^{6} - \frac{19831}{75647} a^{5} + \frac{4564}{75647} a^{4} + \frac{7063}{75647} a^{3} - \frac{16668}{75647} a^{2} + \frac{593}{75647} a - \frac{36243}{75647}$, $\frac{1}{75647} a^{24} - \frac{3}{75647} a^{22} + \frac{111}{75647} a^{21} - \frac{49}{75647} a^{20} - \frac{336}{75647} a^{19} + \frac{942}{75647} a^{18} - \frac{518}{75647} a^{17} + \frac{81}{5819} a^{16} - \frac{113}{75647} a^{15} - \frac{1097}{75647} a^{14} + \frac{1531}{75647} a^{13} - \frac{223}{75647} a^{12} - \frac{344}{75647} a^{11} + \frac{3327}{75647} a^{10} + \frac{22843}{75647} a^{9} - \frac{2306}{5819} a^{8} + \frac{947}{5819} a^{7} + \frac{14658}{75647} a^{6} - \frac{822}{3289} a^{5} + \frac{17203}{75647} a^{4} + \frac{30854}{75647} a^{3} + \frac{1159}{75647} a^{2} + \frac{2701}{6877} a + \frac{6956}{75647}$, $\frac{1}{75647} a^{25} - \frac{5}{75647} a^{22} - \frac{35}{75647} a^{21} + \frac{79}{75647} a^{20} - \frac{651}{75647} a^{19} - \frac{243}{75647} a^{18} - \frac{543}{75647} a^{17} - \frac{763}{75647} a^{16} + \frac{436}{75647} a^{15} + \frac{1415}{75647} a^{14} + \frac{42}{5819} a^{13} - \frac{1513}{75647} a^{12} - \frac{108}{75647} a^{11} + \frac{1060}{75647} a^{10} + \frac{790}{5819} a^{9} - \frac{33481}{75647} a^{8} + \frac{179}{5819} a^{7} + \frac{15926}{75647} a^{6} + \frac{3481}{75647} a^{5} + \frac{15858}{75647} a^{4} - \frac{5328}{75647} a^{3} + \frac{25269}{75647} a^{2} - \frac{15421}{75647} a - \frac{21807}{75647}$, $\frac{1}{75647} a^{26} - \frac{1}{75647} a^{22} + \frac{29}{75647} a^{21} - \frac{40}{75647} a^{20} - \frac{654}{75647} a^{19} + \frac{524}{75647} a^{18} - \frac{1091}{75647} a^{17} - \frac{684}{75647} a^{16} - \frac{991}{75647} a^{15} - \frac{1532}{75647} a^{14} + \frac{29}{75647} a^{13} - \frac{476}{75647} a^{12} - \frac{617}{75647} a^{11} + \frac{15413}{75647} a^{10} - \frac{300}{5819} a^{9} + \frac{13732}{75647} a^{8} + \frac{29511}{75647} a^{7} + \frac{8496}{75647} a^{6} - \frac{12600}{75647} a^{5} + \frac{277}{75647} a^{4} - \frac{400}{75647} a^{3} - \frac{1972}{75647} a^{2} + \frac{6810}{75647} a + \frac{670}{3289}$, $\frac{1}{34116797} a^{27} + \frac{142}{34116797} a^{26} + \frac{171}{34116797} a^{25} - \frac{163}{34116797} a^{24} - \frac{13}{2624369} a^{23} - \frac{150}{3101527} a^{22} - \frac{2029}{34116797} a^{21} - \frac{44752}{34116797} a^{20} - \frac{89642}{34116797} a^{19} - \frac{359514}{34116797} a^{18} - \frac{463598}{34116797} a^{17} + \frac{102591}{34116797} a^{16} - \frac{232488}{34116797} a^{15} + \frac{603843}{34116797} a^{14} - \frac{452129}{34116797} a^{13} + \frac{179615}{34116797} a^{12} + \frac{41542}{2624369} a^{11} - \frac{16170411}{34116797} a^{10} + \frac{9348450}{34116797} a^{9} - \frac{13850392}{34116797} a^{8} - \frac{14567122}{34116797} a^{7} - \frac{10494323}{34116797} a^{6} + \frac{244523}{34116797} a^{5} + \frac{3721095}{34116797} a^{4} - \frac{16599589}{34116797} a^{3} + \frac{148624}{3101527} a^{2} + \frac{7398970}{34116797} a + \frac{3110377}{34116797}$, $\frac{1}{123541800638971} a^{28} - \frac{469561}{123541800638971} a^{27} - \frac{678001997}{123541800638971} a^{26} + \frac{582923028}{123541800638971} a^{25} + \frac{769804344}{123541800638971} a^{24} - \frac{197090255}{123541800638971} a^{23} + \frac{1189880115}{123541800638971} a^{22} - \frac{14553236240}{11231072785361} a^{21} + \frac{43249794894}{123541800638971} a^{20} + \frac{1289915540449}{123541800638971} a^{19} + \frac{220025269941}{11231072785361} a^{18} + \frac{1452946398357}{123541800638971} a^{17} - \frac{294583839535}{123541800638971} a^{16} - \frac{1323438835756}{123541800638971} a^{15} + \frac{461640572491}{123541800638971} a^{14} + \frac{148168981912}{123541800638971} a^{13} - \frac{786099422491}{123541800638971} a^{12} - \frac{1580938999482}{123541800638971} a^{11} + \frac{57466471633221}{123541800638971} a^{10} + \frac{12461019357635}{123541800638971} a^{9} + \frac{34085266141364}{123541800638971} a^{8} + \frac{1216802954142}{9503215433767} a^{7} - \frac{30651663472073}{123541800638971} a^{6} + \frac{1528505098804}{4260062090999} a^{5} + \frac{46804345207426}{123541800638971} a^{4} - \frac{28093874868327}{123541800638971} a^{3} + \frac{580486533304}{1388110119539} a^{2} + \frac{961944788385}{9503215433767} a + \frac{36508927200805}{123541800638971}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
Rank: | $14$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
| |
Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K!f(g): g in Generators(UK)];
| |
Regulator: | \( 737823739010.7355 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
|
Class number formula
Galois group
A solvable group of order 58 |
The 16 conjugacy class representatives for $D_{29}$ |
Character table for $D_{29}$ |
Intermediate fields
The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | $29$ | $29$ | $29$ | $29$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{14}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{14}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | $29$ | $29$ | R | ${\href{/LocalNumberField/29.2.0.1}{2} }^{14}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | $29$ | $29$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{14}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{14}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | $29$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{14}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{14}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
$23$ | $\Q_{23}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
23.2.1.1 | $x^{2} - 23$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
23.2.1.1 | $x^{2} - 23$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
23.2.1.1 | $x^{2} - 23$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
23.2.1.1 | $x^{2} - 23$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
23.2.1.1 | $x^{2} - 23$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
23.2.1.1 | $x^{2} - 23$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
23.2.1.1 | $x^{2} - 23$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
23.2.1.1 | $x^{2} - 23$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
23.2.1.1 | $x^{2} - 23$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
23.2.1.1 | $x^{2} - 23$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
23.2.1.1 | $x^{2} - 23$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
23.2.1.1 | $x^{2} - 23$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
23.2.1.1 | $x^{2} - 23$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
23.2.1.1 | $x^{2} - 23$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
$97$ | $\Q_{97}$ | $x + 5$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
97.2.1.2 | $x^{2} + 485$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
97.2.1.2 | $x^{2} + 485$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
97.2.1.2 | $x^{2} + 485$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
97.2.1.2 | $x^{2} + 485$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
97.2.1.2 | $x^{2} + 485$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
97.2.1.2 | $x^{2} + 485$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
97.2.1.2 | $x^{2} + 485$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
97.2.1.2 | $x^{2} + 485$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
97.2.1.2 | $x^{2} + 485$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
97.2.1.2 | $x^{2} + 485$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
97.2.1.2 | $x^{2} + 485$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
97.2.1.2 | $x^{2} + 485$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
97.2.1.2 | $x^{2} + 485$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
97.2.1.2 | $x^{2} + 485$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |