# SageMath code for working with number field 29.1.57471868152223727924656865491755923007187161136129.1 # (Note that not all these functions may be available, and some may take a long time to execute.) # Define the number field: x = polygen(QQ); K. = NumberField(x^29 - x^28 + 18*x^27 + 12*x^26 + 179*x^25 + 123*x^24 + 1662*x^23 - 196*x^22 + 11119*x^21 - 9104*x^20 + 47466*x^19 - 44547*x^18 + 83114*x^17 - 23886*x^16 - 121329*x^15 + 248495*x^14 - 275546*x^13 - 188738*x^12 + 573921*x^11 - 476142*x^10 + 379865*x^9 - 32019*x^8 + 20658*x^7 - 6163*x^6 - 27930*x^5 + 2012*x^4 - 1404*x^3 + 2898*x^2 - 594*x + 81) # Defining polynomial: K.defining_polynomial() # Degree over Q: K.degree() # Signature: K.signature() # Discriminant: K.disc() # Ramified primes: K.disc().support() # Integral basis: K.integral_basis() # Class group: K.class_group().invariants() # Unit group: UK = K.unit_group() # Unit rank: UK.rank() # Generator for roots of unity: UK.torsion_generator() # Fundamental units: UK.fundamental_units() # Regulator: K.regulator() # Galois group: K.galois_group(type='pari') # Frobenius cycle types: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]