Properties

Label 29.1.574...129.1
Degree $29$
Signature $[1, 14]$
Discriminant $5.747\times 10^{49}$
Root discriminant \(51.98\)
Ramified prime $3583$
Class number $1$ (GRH)
Class group trivial (GRH)
Galois group $D_{29}$ (as 29T2)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^29 - x^28 + 18*x^27 + 12*x^26 + 179*x^25 + 123*x^24 + 1662*x^23 - 196*x^22 + 11119*x^21 - 9104*x^20 + 47466*x^19 - 44547*x^18 + 83114*x^17 - 23886*x^16 - 121329*x^15 + 248495*x^14 - 275546*x^13 - 188738*x^12 + 573921*x^11 - 476142*x^10 + 379865*x^9 - 32019*x^8 + 20658*x^7 - 6163*x^6 - 27930*x^5 + 2012*x^4 - 1404*x^3 + 2898*x^2 - 594*x + 81)
 
gp: K = bnfinit(y^29 - y^28 + 18*y^27 + 12*y^26 + 179*y^25 + 123*y^24 + 1662*y^23 - 196*y^22 + 11119*y^21 - 9104*y^20 + 47466*y^19 - 44547*y^18 + 83114*y^17 - 23886*y^16 - 121329*y^15 + 248495*y^14 - 275546*y^13 - 188738*y^12 + 573921*y^11 - 476142*y^10 + 379865*y^9 - 32019*y^8 + 20658*y^7 - 6163*y^6 - 27930*y^5 + 2012*y^4 - 1404*y^3 + 2898*y^2 - 594*y + 81, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^29 - x^28 + 18*x^27 + 12*x^26 + 179*x^25 + 123*x^24 + 1662*x^23 - 196*x^22 + 11119*x^21 - 9104*x^20 + 47466*x^19 - 44547*x^18 + 83114*x^17 - 23886*x^16 - 121329*x^15 + 248495*x^14 - 275546*x^13 - 188738*x^12 + 573921*x^11 - 476142*x^10 + 379865*x^9 - 32019*x^8 + 20658*x^7 - 6163*x^6 - 27930*x^5 + 2012*x^4 - 1404*x^3 + 2898*x^2 - 594*x + 81);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^29 - x^28 + 18*x^27 + 12*x^26 + 179*x^25 + 123*x^24 + 1662*x^23 - 196*x^22 + 11119*x^21 - 9104*x^20 + 47466*x^19 - 44547*x^18 + 83114*x^17 - 23886*x^16 - 121329*x^15 + 248495*x^14 - 275546*x^13 - 188738*x^12 + 573921*x^11 - 476142*x^10 + 379865*x^9 - 32019*x^8 + 20658*x^7 - 6163*x^6 - 27930*x^5 + 2012*x^4 - 1404*x^3 + 2898*x^2 - 594*x + 81)
 

\( x^{29} - x^{28} + 18 x^{27} + 12 x^{26} + 179 x^{25} + 123 x^{24} + 1662 x^{23} - 196 x^{22} + 11119 x^{21} + \cdots + 81 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $29$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[1, 14]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(57471868152223727924656865491755923007187161136129\) \(\medspace = 3583^{14}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(51.98\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $3583^{1/2}\approx 59.85816569190874$
Ramified primes:   \(3583\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\card{ \Aut(K/\Q) }$:  $1$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{3}a^{9}-\frac{1}{3}a$, $\frac{1}{3}a^{10}-\frac{1}{3}a^{2}$, $\frac{1}{3}a^{11}-\frac{1}{3}a^{3}$, $\frac{1}{3}a^{12}-\frac{1}{3}a^{4}$, $\frac{1}{3}a^{13}-\frac{1}{3}a^{5}$, $\frac{1}{3}a^{14}-\frac{1}{3}a^{6}$, $\frac{1}{3}a^{15}-\frac{1}{3}a^{7}$, $\frac{1}{15}a^{16}+\frac{1}{15}a^{15}+\frac{1}{15}a^{14}+\frac{2}{15}a^{13}+\frac{2}{15}a^{12}+\frac{1}{15}a^{11}+\frac{2}{15}a^{10}+\frac{1}{15}a^{9}-\frac{4}{15}a^{8}-\frac{1}{15}a^{7}+\frac{1}{3}a^{6}-\frac{2}{15}a^{5}+\frac{7}{15}a^{4}-\frac{1}{15}a^{3}+\frac{4}{15}a^{2}-\frac{1}{15}a-\frac{1}{5}$, $\frac{1}{15}a^{17}+\frac{1}{15}a^{14}-\frac{1}{15}a^{12}+\frac{1}{15}a^{11}-\frac{1}{15}a^{10}+\frac{1}{5}a^{8}+\frac{2}{5}a^{7}-\frac{7}{15}a^{6}-\frac{2}{5}a^{5}+\frac{7}{15}a^{4}+\frac{1}{3}a^{3}-\frac{1}{3}a^{2}-\frac{7}{15}a+\frac{1}{5}$, $\frac{1}{45}a^{18}+\frac{2}{15}a^{15}-\frac{2}{15}a^{13}+\frac{2}{15}a^{12}-\frac{2}{15}a^{11}-\frac{1}{9}a^{10}+\frac{1}{15}a^{9}-\frac{1}{5}a^{8}+\frac{1}{15}a^{7}+\frac{1}{5}a^{6}-\frac{1}{15}a^{5}-\frac{1}{3}a^{4}+\frac{1}{3}a^{3}+\frac{13}{45}a^{2}-\frac{4}{15}a$, $\frac{1}{45}a^{19}-\frac{2}{15}a^{15}+\frac{1}{15}a^{14}-\frac{2}{15}a^{13}-\frac{1}{15}a^{12}+\frac{4}{45}a^{11}+\frac{2}{15}a^{10}-\frac{2}{5}a^{8}+\frac{1}{3}a^{7}-\frac{1}{15}a^{6}-\frac{1}{15}a^{5}+\frac{1}{15}a^{4}+\frac{4}{45}a^{3}-\frac{2}{15}a^{2}-\frac{1}{5}a+\frac{2}{5}$, $\frac{1}{45}a^{20}-\frac{2}{15}a^{15}-\frac{2}{15}a^{13}+\frac{1}{45}a^{12}-\frac{1}{15}a^{11}-\frac{1}{15}a^{10}+\frac{1}{15}a^{9}-\frac{1}{5}a^{8}+\frac{2}{15}a^{7}-\frac{2}{5}a^{6}+\frac{2}{15}a^{5}+\frac{16}{45}a^{4}+\frac{1}{15}a^{3}-\frac{1}{3}a^{2}-\frac{1}{15}a-\frac{2}{5}$, $\frac{1}{45}a^{21}+\frac{2}{15}a^{15}-\frac{2}{45}a^{13}-\frac{2}{15}a^{12}+\frac{1}{15}a^{11}-\frac{1}{15}a^{9}-\frac{2}{5}a^{8}+\frac{7}{15}a^{7}-\frac{1}{5}a^{6}+\frac{19}{45}a^{5}+\frac{1}{3}a^{4}-\frac{7}{15}a^{3}-\frac{1}{5}a^{2}+\frac{7}{15}a-\frac{2}{5}$, $\frac{1}{45}a^{22}-\frac{2}{15}a^{15}+\frac{7}{45}a^{14}-\frac{1}{15}a^{13}+\frac{2}{15}a^{12}-\frac{2}{15}a^{11}+\frac{2}{15}a^{9}-\frac{1}{15}a^{7}+\frac{19}{45}a^{6}+\frac{4}{15}a^{5}+\frac{4}{15}a^{4}-\frac{1}{15}a^{3}-\frac{2}{5}a^{2}+\frac{1}{15}a+\frac{2}{5}$, $\frac{1}{135}a^{23}+\frac{1}{135}a^{22}+\frac{1}{135}a^{21}-\frac{1}{135}a^{20}+\frac{1}{135}a^{19}+\frac{1}{45}a^{17}+\frac{1}{45}a^{16}-\frac{14}{135}a^{15}+\frac{19}{135}a^{14}-\frac{11}{135}a^{13}+\frac{4}{27}a^{12}+\frac{16}{135}a^{11}-\frac{1}{9}a^{10}-\frac{7}{45}a^{9}-\frac{19}{45}a^{8}+\frac{8}{27}a^{7}+\frac{61}{135}a^{6}-\frac{17}{135}a^{5}+\frac{7}{27}a^{4}+\frac{2}{27}a^{3}-\frac{13}{45}a^{2}-\frac{1}{15}a-\frac{1}{5}$, $\frac{1}{2025}a^{24}+\frac{1}{675}a^{23}+\frac{4}{675}a^{22}+\frac{1}{2025}a^{21}-\frac{22}{2025}a^{20}-\frac{7}{2025}a^{19}+\frac{2}{675}a^{18}-\frac{1}{225}a^{17}+\frac{46}{2025}a^{16}-\frac{29}{225}a^{15}-\frac{4}{225}a^{14}+\frac{61}{2025}a^{13}+\frac{43}{405}a^{12}+\frac{278}{2025}a^{11}-\frac{112}{675}a^{10}-\frac{7}{45}a^{9}+\frac{37}{81}a^{8}+\frac{46}{135}a^{7}-\frac{307}{675}a^{6}+\frac{181}{2025}a^{5}+\frac{77}{2025}a^{4}-\frac{379}{2025}a^{3}+\frac{22}{135}a^{2}-\frac{34}{75}a+\frac{14}{75}$, $\frac{1}{6075}a^{25}+\frac{2}{675}a^{23}-\frac{4}{1215}a^{22}-\frac{2}{1215}a^{21}-\frac{1}{6075}a^{20}-\frac{1}{2025}a^{19}+\frac{7}{675}a^{18}-\frac{152}{6075}a^{17}-\frac{28}{2025}a^{16}-\frac{271}{2025}a^{15}-\frac{356}{6075}a^{14}+\frac{407}{6075}a^{13}+\frac{23}{6075}a^{12}-\frac{11}{405}a^{11}-\frac{73}{675}a^{10}-\frac{148}{1215}a^{9}-\frac{5}{81}a^{8}-\frac{77}{2025}a^{7}-\frac{596}{6075}a^{6}+\frac{1979}{6075}a^{5}+\frac{217}{1215}a^{4}-\frac{106}{2025}a^{3}-\frac{8}{75}a^{2}+\frac{101}{225}a+\frac{12}{25}$, $\frac{1}{1038825}a^{26}+\frac{7}{207765}a^{25}+\frac{64}{346275}a^{24}+\frac{2257}{1038825}a^{23}+\frac{5203}{1038825}a^{22}-\frac{2969}{346275}a^{21}-\frac{1616}{1038825}a^{20}-\frac{1}{95}a^{19}+\frac{568}{54675}a^{18}-\frac{2582}{207765}a^{17}+\frac{11452}{346275}a^{16}+\frac{3794}{207765}a^{15}-\frac{136802}{1038825}a^{14}-\frac{7756}{346275}a^{13}+\frac{271}{2187}a^{12}-\frac{458}{7695}a^{11}-\frac{68699}{1038825}a^{10}-\frac{29771}{207765}a^{9}-\frac{86387}{346275}a^{8}-\frac{399686}{1038825}a^{7}-\frac{61981}{207765}a^{6}+\frac{2516}{115425}a^{5}-\frac{35833}{207765}a^{4}-\frac{181}{1425}a^{3}-\frac{1873}{6075}a^{2}-\frac{2108}{38475}a-\frac{598}{12825}$, $\frac{1}{3116475}a^{27}+\frac{1}{3116475}a^{26}+\frac{28}{3116475}a^{25}-\frac{167}{3116475}a^{24}-\frac{8}{10935}a^{23}-\frac{26266}{3116475}a^{22}+\frac{33436}{3116475}a^{21}+\frac{1312}{623295}a^{20}-\frac{26279}{3116475}a^{19}+\frac{32614}{3116475}a^{18}-\frac{88952}{3116475}a^{17}+\frac{38461}{3116475}a^{16}+\frac{102097}{1038825}a^{15}+\frac{9161}{124659}a^{14}-\frac{382157}{3116475}a^{13}+\frac{445793}{3116475}a^{12}+\frac{157993}{3116475}a^{11}+\frac{72947}{623295}a^{10}+\frac{72049}{3116475}a^{9}-\frac{65537}{3116475}a^{8}-\frac{96683}{346275}a^{7}+\frac{158339}{3116475}a^{6}+\frac{1147057}{3116475}a^{5}-\frac{1421896}{3116475}a^{4}+\frac{127271}{346275}a^{3}+\frac{18262}{346275}a^{2}+\frac{39098}{115425}a-\frac{3184}{7695}$, $\frac{1}{31\!\cdots\!25}a^{28}+\frac{20\!\cdots\!56}{10\!\cdots\!75}a^{27}-\frac{28\!\cdots\!14}{10\!\cdots\!75}a^{26}-\frac{22\!\cdots\!63}{34\!\cdots\!25}a^{25}+\frac{16\!\cdots\!81}{16\!\cdots\!75}a^{24}-\frac{83\!\cdots\!72}{31\!\cdots\!25}a^{23}-\frac{26\!\cdots\!13}{31\!\cdots\!25}a^{22}+\frac{93\!\cdots\!33}{31\!\cdots\!25}a^{21}-\frac{12\!\cdots\!17}{62\!\cdots\!85}a^{20}+\frac{21\!\cdots\!96}{20\!\cdots\!95}a^{19}+\frac{52\!\cdots\!42}{10\!\cdots\!75}a^{18}-\frac{16\!\cdots\!83}{10\!\cdots\!75}a^{17}+\frac{83\!\cdots\!07}{31\!\cdots\!25}a^{16}-\frac{40\!\cdots\!92}{31\!\cdots\!25}a^{15}-\frac{24\!\cdots\!99}{10\!\cdots\!75}a^{14}+\frac{19\!\cdots\!66}{12\!\cdots\!97}a^{13}-\frac{27\!\cdots\!49}{31\!\cdots\!25}a^{12}-\frac{47\!\cdots\!37}{34\!\cdots\!25}a^{11}-\frac{41\!\cdots\!27}{34\!\cdots\!25}a^{10}+\frac{10\!\cdots\!82}{10\!\cdots\!75}a^{9}-\frac{13\!\cdots\!64}{31\!\cdots\!25}a^{8}+\frac{15\!\cdots\!33}{31\!\cdots\!25}a^{7}-\frac{86\!\cdots\!31}{31\!\cdots\!25}a^{6}+\frac{41\!\cdots\!58}{31\!\cdots\!25}a^{5}+\frac{68\!\cdots\!74}{16\!\cdots\!75}a^{4}-\frac{10\!\cdots\!39}{34\!\cdots\!25}a^{3}-\frac{97\!\cdots\!62}{80\!\cdots\!75}a^{2}+\frac{56\!\cdots\!93}{11\!\cdots\!75}a-\frac{16\!\cdots\!69}{38\!\cdots\!25}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  No
Index:  Not computed
Inessential primes:  $3$, $5$

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $14$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{13\!\cdots\!18}{72\!\cdots\!75}a^{28}-\frac{23\!\cdots\!23}{24\!\cdots\!25}a^{27}+\frac{16\!\cdots\!24}{48\!\cdots\!65}a^{26}+\frac{10\!\cdots\!71}{26\!\cdots\!25}a^{25}+\frac{13\!\cdots\!43}{38\!\cdots\!25}a^{24}+\frac{29\!\cdots\!56}{72\!\cdots\!75}a^{23}+\frac{24\!\cdots\!68}{72\!\cdots\!75}a^{22}+\frac{89\!\cdots\!64}{72\!\cdots\!75}a^{21}+\frac{15\!\cdots\!22}{72\!\cdots\!75}a^{20}-\frac{16\!\cdots\!52}{24\!\cdots\!25}a^{19}+\frac{20\!\cdots\!67}{24\!\cdots\!25}a^{18}-\frac{10\!\cdots\!53}{24\!\cdots\!25}a^{17}+\frac{19\!\cdots\!16}{14\!\cdots\!95}a^{16}+\frac{14\!\cdots\!54}{72\!\cdots\!75}a^{15}-\frac{50\!\cdots\!83}{23\!\cdots\!25}a^{14}+\frac{26\!\cdots\!59}{72\!\cdots\!75}a^{13}-\frac{50\!\cdots\!87}{14\!\cdots\!95}a^{12}-\frac{83\!\cdots\!27}{16\!\cdots\!55}a^{11}+\frac{44\!\cdots\!09}{53\!\cdots\!85}a^{10}-\frac{11\!\cdots\!58}{24\!\cdots\!25}a^{9}+\frac{69\!\cdots\!59}{14\!\cdots\!95}a^{8}+\frac{11\!\cdots\!49}{72\!\cdots\!75}a^{7}+\frac{92\!\cdots\!17}{72\!\cdots\!75}a^{6}+\frac{31\!\cdots\!63}{72\!\cdots\!75}a^{5}-\frac{22\!\cdots\!22}{72\!\cdots\!75}a^{4}-\frac{86\!\cdots\!79}{80\!\cdots\!75}a^{3}-\frac{69\!\cdots\!11}{80\!\cdots\!75}a^{2}+\frac{45\!\cdots\!86}{26\!\cdots\!25}a-\frac{36\!\cdots\!44}{89\!\cdots\!75}$, $\frac{32\!\cdots\!52}{31\!\cdots\!25}a^{28}-\frac{18\!\cdots\!59}{20\!\cdots\!95}a^{27}+\frac{19\!\cdots\!58}{10\!\cdots\!75}a^{26}+\frac{17\!\cdots\!47}{11\!\cdots\!75}a^{25}+\frac{60\!\cdots\!41}{31\!\cdots\!25}a^{24}+\frac{49\!\cdots\!41}{31\!\cdots\!25}a^{23}+\frac{56\!\cdots\!98}{31\!\cdots\!25}a^{22}+\frac{57\!\cdots\!43}{62\!\cdots\!85}a^{21}+\frac{37\!\cdots\!09}{31\!\cdots\!25}a^{20}-\frac{32\!\cdots\!34}{41\!\cdots\!99}a^{19}+\frac{54\!\cdots\!89}{10\!\cdots\!75}a^{18}-\frac{87\!\cdots\!91}{20\!\cdots\!95}a^{17}+\frac{30\!\cdots\!46}{31\!\cdots\!25}a^{16}-\frac{80\!\cdots\!81}{31\!\cdots\!25}a^{15}-\frac{20\!\cdots\!59}{20\!\cdots\!35}a^{14}+\frac{14\!\cdots\!29}{62\!\cdots\!85}a^{13}-\frac{91\!\cdots\!73}{31\!\cdots\!25}a^{12}-\frac{10\!\cdots\!03}{69\!\cdots\!65}a^{11}+\frac{55\!\cdots\!09}{11\!\cdots\!75}a^{10}-\frac{50\!\cdots\!59}{10\!\cdots\!75}a^{9}+\frac{32\!\cdots\!96}{62\!\cdots\!85}a^{8}-\frac{40\!\cdots\!67}{31\!\cdots\!25}a^{7}+\frac{44\!\cdots\!99}{32\!\cdots\!15}a^{6}+\frac{30\!\cdots\!82}{31\!\cdots\!25}a^{5}-\frac{87\!\cdots\!61}{31\!\cdots\!25}a^{4}+\frac{32\!\cdots\!87}{34\!\cdots\!25}a^{3}-\frac{87\!\cdots\!93}{80\!\cdots\!75}a^{2}+\frac{12\!\cdots\!89}{46\!\cdots\!11}a-\frac{36\!\cdots\!54}{76\!\cdots\!85}$, $\frac{49\!\cdots\!83}{34\!\cdots\!25}a^{28}-\frac{18\!\cdots\!12}{34\!\cdots\!25}a^{27}+\frac{85\!\cdots\!63}{34\!\cdots\!25}a^{26}+\frac{22\!\cdots\!18}{69\!\cdots\!65}a^{25}+\frac{92\!\cdots\!64}{34\!\cdots\!25}a^{24}+\frac{11\!\cdots\!41}{34\!\cdots\!25}a^{23}+\frac{28\!\cdots\!04}{11\!\cdots\!75}a^{22}+\frac{13\!\cdots\!91}{11\!\cdots\!75}a^{21}+\frac{18\!\cdots\!37}{11\!\cdots\!75}a^{20}-\frac{11\!\cdots\!28}{34\!\cdots\!25}a^{19}+\frac{20\!\cdots\!66}{34\!\cdots\!25}a^{18}-\frac{76\!\cdots\!43}{34\!\cdots\!25}a^{17}+\frac{28\!\cdots\!39}{34\!\cdots\!25}a^{16}+\frac{12\!\cdots\!81}{34\!\cdots\!25}a^{15}-\frac{23\!\cdots\!14}{12\!\cdots\!75}a^{14}+\frac{56\!\cdots\!48}{23\!\cdots\!55}a^{13}-\frac{22\!\cdots\!29}{12\!\cdots\!75}a^{12}-\frac{17\!\cdots\!62}{34\!\cdots\!25}a^{11}+\frac{21\!\cdots\!63}{34\!\cdots\!25}a^{10}-\frac{30\!\cdots\!84}{18\!\cdots\!75}a^{9}+\frac{92\!\cdots\!96}{69\!\cdots\!65}a^{8}+\frac{88\!\cdots\!42}{34\!\cdots\!25}a^{7}+\frac{52\!\cdots\!13}{11\!\cdots\!75}a^{6}-\frac{53\!\cdots\!88}{47\!\cdots\!25}a^{5}-\frac{10\!\cdots\!16}{34\!\cdots\!25}a^{4}-\frac{22\!\cdots\!12}{12\!\cdots\!75}a^{3}+\frac{24\!\cdots\!14}{89\!\cdots\!75}a^{2}+\frac{51\!\cdots\!87}{25\!\cdots\!95}a+\frac{30\!\cdots\!07}{42\!\cdots\!25}$, $\frac{24\!\cdots\!97}{31\!\cdots\!25}a^{28}-\frac{68\!\cdots\!57}{20\!\cdots\!95}a^{27}+\frac{14\!\cdots\!04}{10\!\cdots\!75}a^{26}+\frac{31\!\cdots\!63}{18\!\cdots\!75}a^{25}+\frac{96\!\cdots\!04}{62\!\cdots\!85}a^{24}+\frac{58\!\cdots\!48}{31\!\cdots\!25}a^{23}+\frac{45\!\cdots\!08}{31\!\cdots\!25}a^{22}+\frac{21\!\cdots\!97}{31\!\cdots\!25}a^{21}+\frac{29\!\cdots\!56}{31\!\cdots\!25}a^{20}-\frac{19\!\cdots\!81}{10\!\cdots\!75}a^{19}+\frac{40\!\cdots\!66}{10\!\cdots\!75}a^{18}-\frac{32\!\cdots\!14}{20\!\cdots\!95}a^{17}+\frac{20\!\cdots\!51}{31\!\cdots\!25}a^{16}+\frac{19\!\cdots\!14}{31\!\cdots\!25}a^{15}-\frac{73\!\cdots\!23}{10\!\cdots\!75}a^{14}+\frac{44\!\cdots\!02}{31\!\cdots\!25}a^{13}-\frac{51\!\cdots\!11}{31\!\cdots\!25}a^{12}-\frac{20\!\cdots\!33}{11\!\cdots\!75}a^{11}+\frac{38\!\cdots\!33}{13\!\cdots\!33}a^{10}-\frac{25\!\cdots\!69}{10\!\cdots\!75}a^{9}+\frac{10\!\cdots\!02}{31\!\cdots\!25}a^{8}+\frac{41\!\cdots\!46}{31\!\cdots\!25}a^{7}+\frac{32\!\cdots\!43}{31\!\cdots\!25}a^{6}+\frac{16\!\cdots\!08}{31\!\cdots\!25}a^{5}-\frac{24\!\cdots\!88}{32\!\cdots\!15}a^{4}-\frac{39\!\cdots\!12}{34\!\cdots\!25}a^{3}-\frac{67\!\cdots\!76}{80\!\cdots\!75}a^{2}+\frac{17\!\cdots\!13}{11\!\cdots\!75}a-\frac{14\!\cdots\!86}{38\!\cdots\!25}$, $\frac{53\!\cdots\!79}{31\!\cdots\!25}a^{28}-\frac{96\!\cdots\!51}{10\!\cdots\!75}a^{27}+\frac{31\!\cdots\!41}{10\!\cdots\!75}a^{26}+\frac{12\!\cdots\!71}{34\!\cdots\!25}a^{25}+\frac{10\!\cdots\!01}{31\!\cdots\!25}a^{24}+\frac{11\!\cdots\!49}{31\!\cdots\!25}a^{23}+\frac{94\!\cdots\!57}{31\!\cdots\!25}a^{22}+\frac{33\!\cdots\!08}{31\!\cdots\!25}a^{21}+\frac{61\!\cdots\!01}{31\!\cdots\!25}a^{20}-\frac{35\!\cdots\!71}{54\!\cdots\!25}a^{19}+\frac{16\!\cdots\!77}{20\!\cdots\!95}a^{18}-\frac{41\!\cdots\!64}{10\!\cdots\!75}a^{17}+\frac{39\!\cdots\!79}{31\!\cdots\!25}a^{16}+\frac{50\!\cdots\!23}{31\!\cdots\!25}a^{15}-\frac{20\!\cdots\!23}{10\!\cdots\!75}a^{14}+\frac{10\!\cdots\!34}{31\!\cdots\!25}a^{13}-\frac{20\!\cdots\!76}{62\!\cdots\!85}a^{12}-\frac{16\!\cdots\!87}{34\!\cdots\!25}a^{11}+\frac{26\!\cdots\!08}{34\!\cdots\!25}a^{10}-\frac{25\!\cdots\!83}{54\!\cdots\!25}a^{9}+\frac{13\!\cdots\!73}{31\!\cdots\!25}a^{8}+\frac{45\!\cdots\!19}{31\!\cdots\!25}a^{7}+\frac{33\!\cdots\!81}{31\!\cdots\!25}a^{6}+\frac{12\!\cdots\!92}{31\!\cdots\!25}a^{5}-\frac{36\!\cdots\!37}{12\!\cdots\!97}a^{4}-\frac{32\!\cdots\!14}{34\!\cdots\!25}a^{3}-\frac{12\!\cdots\!73}{16\!\cdots\!49}a^{2}+\frac{18\!\cdots\!09}{11\!\cdots\!75}a-\frac{13\!\cdots\!88}{38\!\cdots\!25}$, $\frac{14\!\cdots\!29}{31\!\cdots\!25}a^{28}-\frac{28\!\cdots\!07}{10\!\cdots\!75}a^{27}+\frac{17\!\cdots\!77}{20\!\cdots\!95}a^{26}+\frac{10\!\cdots\!47}{11\!\cdots\!75}a^{25}+\frac{10\!\cdots\!67}{12\!\cdots\!97}a^{24}+\frac{59\!\cdots\!72}{62\!\cdots\!85}a^{23}+\frac{25\!\cdots\!86}{31\!\cdots\!25}a^{22}+\frac{79\!\cdots\!83}{31\!\cdots\!25}a^{21}+\frac{16\!\cdots\!86}{31\!\cdots\!25}a^{20}-\frac{20\!\cdots\!86}{10\!\cdots\!75}a^{19}+\frac{22\!\cdots\!16}{10\!\cdots\!75}a^{18}-\frac{12\!\cdots\!77}{10\!\cdots\!75}a^{17}+\frac{10\!\cdots\!13}{31\!\cdots\!25}a^{16}+\frac{24\!\cdots\!58}{62\!\cdots\!85}a^{15}-\frac{59\!\cdots\!77}{10\!\cdots\!65}a^{14}+\frac{29\!\cdots\!16}{31\!\cdots\!25}a^{13}-\frac{27\!\cdots\!42}{31\!\cdots\!25}a^{12}-\frac{45\!\cdots\!32}{34\!\cdots\!25}a^{11}+\frac{84\!\cdots\!16}{38\!\cdots\!25}a^{10}-\frac{13\!\cdots\!21}{10\!\cdots\!75}a^{9}+\frac{35\!\cdots\!99}{31\!\cdots\!25}a^{8}+\frac{13\!\cdots\!26}{31\!\cdots\!25}a^{7}+\frac{62\!\cdots\!62}{31\!\cdots\!25}a^{6}+\frac{11\!\cdots\!30}{12\!\cdots\!97}a^{5}-\frac{29\!\cdots\!31}{31\!\cdots\!25}a^{4}-\frac{88\!\cdots\!43}{34\!\cdots\!25}a^{3}-\frac{11\!\cdots\!93}{80\!\cdots\!75}a^{2}+\frac{54\!\cdots\!52}{11\!\cdots\!75}a-\frac{28\!\cdots\!14}{76\!\cdots\!85}$, $\frac{62\!\cdots\!66}{31\!\cdots\!25}a^{28}-\frac{11\!\cdots\!22}{10\!\cdots\!75}a^{27}+\frac{37\!\cdots\!96}{10\!\cdots\!75}a^{26}+\frac{13\!\cdots\!12}{34\!\cdots\!25}a^{25}+\frac{11\!\cdots\!61}{31\!\cdots\!25}a^{24}+\frac{26\!\cdots\!37}{62\!\cdots\!85}a^{23}+\frac{22\!\cdots\!46}{62\!\cdots\!85}a^{22}+\frac{37\!\cdots\!22}{31\!\cdots\!25}a^{21}+\frac{71\!\cdots\!52}{31\!\cdots\!25}a^{20}-\frac{82\!\cdots\!49}{10\!\cdots\!75}a^{19}+\frac{19\!\cdots\!73}{20\!\cdots\!95}a^{18}-\frac{50\!\cdots\!48}{10\!\cdots\!75}a^{17}+\frac{18\!\cdots\!92}{12\!\cdots\!97}a^{16}+\frac{53\!\cdots\!77}{31\!\cdots\!25}a^{15}-\frac{47\!\cdots\!78}{20\!\cdots\!35}a^{14}+\frac{12\!\cdots\!76}{31\!\cdots\!25}a^{13}-\frac{23\!\cdots\!43}{62\!\cdots\!85}a^{12}-\frac{62\!\cdots\!11}{11\!\cdots\!75}a^{11}+\frac{31\!\cdots\!59}{34\!\cdots\!25}a^{10}-\frac{11\!\cdots\!14}{20\!\cdots\!95}a^{9}+\frac{32\!\cdots\!32}{62\!\cdots\!85}a^{8}+\frac{10\!\cdots\!23}{62\!\cdots\!85}a^{7}+\frac{76\!\cdots\!57}{62\!\cdots\!85}a^{6}+\frac{58\!\cdots\!02}{12\!\cdots\!97}a^{5}-\frac{10\!\cdots\!33}{31\!\cdots\!25}a^{4}-\frac{35\!\cdots\!72}{34\!\cdots\!25}a^{3}-\frac{66\!\cdots\!92}{80\!\cdots\!75}a^{2}+\frac{21\!\cdots\!02}{11\!\cdots\!75}a-\frac{19\!\cdots\!46}{38\!\cdots\!25}$, $\frac{12\!\cdots\!17}{62\!\cdots\!85}a^{28}-\frac{11\!\cdots\!27}{10\!\cdots\!75}a^{27}+\frac{38\!\cdots\!98}{10\!\cdots\!75}a^{26}+\frac{17\!\cdots\!94}{42\!\cdots\!25}a^{25}+\frac{12\!\cdots\!68}{31\!\cdots\!25}a^{24}+\frac{26\!\cdots\!21}{62\!\cdots\!85}a^{23}+\frac{11\!\cdots\!68}{31\!\cdots\!25}a^{22}+\frac{77\!\cdots\!81}{62\!\cdots\!85}a^{21}+\frac{73\!\cdots\!19}{31\!\cdots\!25}a^{20}-\frac{16\!\cdots\!88}{20\!\cdots\!95}a^{19}+\frac{97\!\cdots\!78}{10\!\cdots\!75}a^{18}-\frac{10\!\cdots\!19}{20\!\cdots\!95}a^{17}+\frac{45\!\cdots\!84}{31\!\cdots\!25}a^{16}+\frac{65\!\cdots\!56}{31\!\cdots\!25}a^{15}-\frac{49\!\cdots\!19}{20\!\cdots\!35}a^{14}+\frac{12\!\cdots\!81}{31\!\cdots\!25}a^{13}-\frac{11\!\cdots\!21}{31\!\cdots\!25}a^{12}-\frac{40\!\cdots\!22}{69\!\cdots\!65}a^{11}+\frac{10\!\cdots\!73}{11\!\cdots\!75}a^{10}-\frac{57\!\cdots\!58}{10\!\cdots\!75}a^{9}+\frac{15\!\cdots\!82}{31\!\cdots\!25}a^{8}+\frac{63\!\cdots\!53}{31\!\cdots\!25}a^{7}+\frac{32\!\cdots\!91}{31\!\cdots\!25}a^{6}+\frac{53\!\cdots\!65}{12\!\cdots\!97}a^{5}-\frac{11\!\cdots\!62}{31\!\cdots\!25}a^{4}-\frac{95\!\cdots\!37}{69\!\cdots\!65}a^{3}-\frac{11\!\cdots\!08}{16\!\cdots\!55}a^{2}+\frac{24\!\cdots\!07}{11\!\cdots\!75}a-\frac{60\!\cdots\!42}{20\!\cdots\!75}$, $\frac{50\!\cdots\!54}{12\!\cdots\!97}a^{28}-\frac{30\!\cdots\!58}{20\!\cdots\!95}a^{27}+\frac{39\!\cdots\!27}{54\!\cdots\!25}a^{26}+\frac{22\!\cdots\!96}{23\!\cdots\!55}a^{25}+\frac{24\!\cdots\!84}{31\!\cdots\!25}a^{24}+\frac{31\!\cdots\!06}{31\!\cdots\!25}a^{23}+\frac{23\!\cdots\!19}{31\!\cdots\!25}a^{22}+\frac{12\!\cdots\!48}{31\!\cdots\!25}a^{21}+\frac{14\!\cdots\!74}{31\!\cdots\!25}a^{20}-\frac{72\!\cdots\!59}{10\!\cdots\!75}a^{19}+\frac{19\!\cdots\!13}{10\!\cdots\!75}a^{18}-\frac{64\!\cdots\!88}{10\!\cdots\!75}a^{17}+\frac{17\!\cdots\!12}{62\!\cdots\!85}a^{16}+\frac{29\!\cdots\!24}{31\!\cdots\!25}a^{15}-\frac{46\!\cdots\!74}{10\!\cdots\!75}a^{14}+\frac{22\!\cdots\!89}{31\!\cdots\!25}a^{13}-\frac{40\!\cdots\!96}{62\!\cdots\!85}a^{12}-\frac{42\!\cdots\!53}{34\!\cdots\!25}a^{11}+\frac{18\!\cdots\!64}{11\!\cdots\!75}a^{10}-\frac{36\!\cdots\!89}{41\!\cdots\!99}a^{9}+\frac{28\!\cdots\!41}{31\!\cdots\!25}a^{8}+\frac{19\!\cdots\!61}{31\!\cdots\!25}a^{7}+\frac{90\!\cdots\!64}{31\!\cdots\!25}a^{6}+\frac{55\!\cdots\!87}{31\!\cdots\!25}a^{5}-\frac{22\!\cdots\!98}{31\!\cdots\!25}a^{4}-\frac{23\!\cdots\!66}{69\!\cdots\!65}a^{3}-\frac{18\!\cdots\!51}{80\!\cdots\!75}a^{2}+\frac{20\!\cdots\!54}{11\!\cdots\!75}a+\frac{11\!\cdots\!31}{38\!\cdots\!25}$, $\frac{45\!\cdots\!02}{31\!\cdots\!25}a^{28}-\frac{75\!\cdots\!03}{10\!\cdots\!75}a^{27}+\frac{27\!\cdots\!83}{10\!\cdots\!75}a^{26}+\frac{10\!\cdots\!07}{34\!\cdots\!25}a^{25}+\frac{86\!\cdots\!23}{31\!\cdots\!25}a^{24}+\frac{20\!\cdots\!18}{62\!\cdots\!85}a^{23}+\frac{81\!\cdots\!66}{31\!\cdots\!25}a^{22}+\frac{31\!\cdots\!04}{31\!\cdots\!25}a^{21}+\frac{52\!\cdots\!67}{31\!\cdots\!25}a^{20}-\frac{50\!\cdots\!63}{10\!\cdots\!75}a^{19}+\frac{69\!\cdots\!96}{10\!\cdots\!75}a^{18}-\frac{32\!\cdots\!26}{10\!\cdots\!75}a^{17}+\frac{33\!\cdots\!48}{31\!\cdots\!25}a^{16}+\frac{57\!\cdots\!66}{31\!\cdots\!25}a^{15}-\frac{34\!\cdots\!11}{20\!\cdots\!35}a^{14}+\frac{87\!\cdots\!19}{31\!\cdots\!25}a^{13}-\frac{82\!\cdots\!17}{31\!\cdots\!25}a^{12}-\frac{14\!\cdots\!61}{34\!\cdots\!25}a^{11}+\frac{11\!\cdots\!54}{18\!\cdots\!75}a^{10}-\frac{39\!\cdots\!06}{10\!\cdots\!75}a^{9}+\frac{60\!\cdots\!91}{16\!\cdots\!75}a^{8}+\frac{42\!\cdots\!96}{31\!\cdots\!25}a^{7}+\frac{16\!\cdots\!58}{16\!\cdots\!75}a^{6}+\frac{50\!\cdots\!90}{12\!\cdots\!97}a^{5}-\frac{13\!\cdots\!51}{62\!\cdots\!85}a^{4}-\frac{28\!\cdots\!04}{34\!\cdots\!25}a^{3}-\frac{51\!\cdots\!94}{80\!\cdots\!75}a^{2}+\frac{12\!\cdots\!58}{11\!\cdots\!75}a-\frac{10\!\cdots\!63}{38\!\cdots\!25}$, $\frac{47\!\cdots\!72}{10\!\cdots\!75}a^{28}-\frac{83\!\cdots\!52}{34\!\cdots\!25}a^{27}+\frac{27\!\cdots\!92}{34\!\cdots\!25}a^{26}+\frac{32\!\cdots\!94}{34\!\cdots\!25}a^{25}+\frac{46\!\cdots\!47}{54\!\cdots\!25}a^{24}+\frac{99\!\cdots\!92}{10\!\cdots\!75}a^{23}+\frac{83\!\cdots\!16}{10\!\cdots\!75}a^{22}+\frac{29\!\cdots\!47}{10\!\cdots\!75}a^{21}+\frac{53\!\cdots\!22}{10\!\cdots\!75}a^{20}-\frac{19\!\cdots\!78}{11\!\cdots\!75}a^{19}+\frac{24\!\cdots\!99}{11\!\cdots\!75}a^{18}-\frac{36\!\cdots\!82}{34\!\cdots\!25}a^{17}+\frac{34\!\cdots\!58}{10\!\cdots\!75}a^{16}+\frac{47\!\cdots\!36}{10\!\cdots\!75}a^{15}-\frac{17\!\cdots\!51}{33\!\cdots\!25}a^{14}+\frac{91\!\cdots\!69}{10\!\cdots\!75}a^{13}-\frac{87\!\cdots\!48}{10\!\cdots\!75}a^{12}-\frac{43\!\cdots\!42}{34\!\cdots\!25}a^{11}+\frac{14\!\cdots\!43}{69\!\cdots\!65}a^{10}-\frac{46\!\cdots\!28}{38\!\cdots\!25}a^{9}+\frac{12\!\cdots\!89}{10\!\cdots\!75}a^{8}+\frac{41\!\cdots\!26}{10\!\cdots\!75}a^{7}+\frac{29\!\cdots\!51}{10\!\cdots\!75}a^{6}+\frac{21\!\cdots\!39}{20\!\cdots\!95}a^{5}-\frac{81\!\cdots\!47}{10\!\cdots\!75}a^{4}-\frac{32\!\cdots\!13}{11\!\cdots\!75}a^{3}-\frac{52\!\cdots\!83}{26\!\cdots\!25}a^{2}+\frac{15\!\cdots\!03}{38\!\cdots\!25}a-\frac{53\!\cdots\!69}{67\!\cdots\!25}$, $\frac{30\!\cdots\!59}{31\!\cdots\!25}a^{28}-\frac{70\!\cdots\!96}{10\!\cdots\!75}a^{27}+\frac{17\!\cdots\!61}{10\!\cdots\!75}a^{26}+\frac{57\!\cdots\!11}{34\!\cdots\!25}a^{25}+\frac{55\!\cdots\!78}{31\!\cdots\!25}a^{24}+\frac{10\!\cdots\!91}{62\!\cdots\!85}a^{23}+\frac{51\!\cdots\!01}{31\!\cdots\!25}a^{22}+\frac{19\!\cdots\!86}{62\!\cdots\!85}a^{21}+\frac{33\!\cdots\!82}{31\!\cdots\!25}a^{20}-\frac{57\!\cdots\!92}{10\!\cdots\!75}a^{19}+\frac{46\!\cdots\!29}{10\!\cdots\!75}a^{18}-\frac{12\!\cdots\!52}{41\!\cdots\!99}a^{17}+\frac{22\!\cdots\!51}{31\!\cdots\!25}a^{16}-\frac{63\!\cdots\!84}{31\!\cdots\!25}a^{15}-\frac{46\!\cdots\!68}{40\!\cdots\!87}a^{14}+\frac{64\!\cdots\!36}{31\!\cdots\!25}a^{13}-\frac{13\!\cdots\!62}{62\!\cdots\!85}a^{12}-\frac{27\!\cdots\!51}{11\!\cdots\!75}a^{11}+\frac{32\!\cdots\!23}{69\!\cdots\!65}a^{10}-\frac{34\!\cdots\!62}{10\!\cdots\!75}a^{9}+\frac{89\!\cdots\!38}{31\!\cdots\!25}a^{8}+\frac{14\!\cdots\!74}{31\!\cdots\!25}a^{7}+\frac{13\!\cdots\!19}{31\!\cdots\!25}a^{6}+\frac{39\!\cdots\!39}{31\!\cdots\!25}a^{5}-\frac{62\!\cdots\!51}{31\!\cdots\!25}a^{4}-\frac{92\!\cdots\!16}{34\!\cdots\!25}a^{3}-\frac{45\!\cdots\!27}{16\!\cdots\!55}a^{2}+\frac{17\!\cdots\!11}{11\!\cdots\!75}a-\frac{68\!\cdots\!18}{20\!\cdots\!75}$, $\frac{29\!\cdots\!02}{31\!\cdots\!25}a^{28}-\frac{58\!\cdots\!26}{10\!\cdots\!75}a^{27}+\frac{35\!\cdots\!54}{20\!\cdots\!95}a^{26}+\frac{63\!\cdots\!51}{34\!\cdots\!25}a^{25}+\frac{55\!\cdots\!12}{31\!\cdots\!25}a^{24}+\frac{59\!\cdots\!47}{31\!\cdots\!25}a^{23}+\frac{51\!\cdots\!17}{31\!\cdots\!25}a^{22}+\frac{15\!\cdots\!36}{31\!\cdots\!25}a^{21}+\frac{33\!\cdots\!82}{31\!\cdots\!25}a^{20}-\frac{44\!\cdots\!13}{10\!\cdots\!75}a^{19}+\frac{45\!\cdots\!84}{10\!\cdots\!75}a^{18}-\frac{51\!\cdots\!67}{20\!\cdots\!95}a^{17}+\frac{21\!\cdots\!38}{31\!\cdots\!25}a^{16}+\frac{17\!\cdots\!72}{31\!\cdots\!25}a^{15}-\frac{11\!\cdots\!09}{10\!\cdots\!75}a^{14}+\frac{59\!\cdots\!29}{31\!\cdots\!25}a^{13}-\frac{11\!\cdots\!63}{62\!\cdots\!85}a^{12}-\frac{88\!\cdots\!22}{34\!\cdots\!25}a^{11}+\frac{15\!\cdots\!18}{34\!\cdots\!25}a^{10}-\frac{28\!\cdots\!73}{10\!\cdots\!75}a^{9}+\frac{77\!\cdots\!37}{31\!\cdots\!25}a^{8}+\frac{22\!\cdots\!41}{31\!\cdots\!25}a^{7}+\frac{14\!\cdots\!92}{31\!\cdots\!25}a^{6}+\frac{19\!\cdots\!85}{12\!\cdots\!97}a^{5}-\frac{55\!\cdots\!79}{31\!\cdots\!25}a^{4}-\frac{33\!\cdots\!52}{69\!\cdots\!65}a^{3}-\frac{25\!\cdots\!87}{80\!\cdots\!75}a^{2}+\frac{29\!\cdots\!92}{23\!\cdots\!55}a-\frac{59\!\cdots\!77}{38\!\cdots\!25}$, $\frac{51\!\cdots\!23}{31\!\cdots\!25}a^{28}-\frac{85\!\cdots\!77}{10\!\cdots\!75}a^{27}+\frac{30\!\cdots\!77}{10\!\cdots\!75}a^{26}+\frac{63\!\cdots\!89}{18\!\cdots\!75}a^{25}+\frac{97\!\cdots\!54}{31\!\cdots\!25}a^{24}+\frac{11\!\cdots\!57}{31\!\cdots\!25}a^{23}+\frac{90\!\cdots\!58}{31\!\cdots\!25}a^{22}+\frac{35\!\cdots\!58}{31\!\cdots\!25}a^{21}+\frac{58\!\cdots\!12}{31\!\cdots\!25}a^{20}-\frac{57\!\cdots\!42}{10\!\cdots\!75}a^{19}+\frac{15\!\cdots\!17}{20\!\cdots\!95}a^{18}-\frac{36\!\cdots\!38}{10\!\cdots\!75}a^{17}+\frac{36\!\cdots\!86}{31\!\cdots\!25}a^{16}+\frac{65\!\cdots\!76}{31\!\cdots\!25}a^{15}-\frac{19\!\cdots\!34}{10\!\cdots\!75}a^{14}+\frac{97\!\cdots\!87}{31\!\cdots\!25}a^{13}-\frac{91\!\cdots\!87}{31\!\cdots\!25}a^{12}-\frac{10\!\cdots\!09}{23\!\cdots\!55}a^{11}+\frac{49\!\cdots\!72}{69\!\cdots\!65}a^{10}-\frac{43\!\cdots\!54}{10\!\cdots\!75}a^{9}+\frac{12\!\cdots\!61}{31\!\cdots\!25}a^{8}+\frac{50\!\cdots\!82}{31\!\cdots\!25}a^{7}+\frac{32\!\cdots\!34}{31\!\cdots\!25}a^{6}+\frac{26\!\cdots\!98}{62\!\cdots\!85}a^{5}-\frac{83\!\cdots\!26}{31\!\cdots\!25}a^{4}-\frac{38\!\cdots\!42}{34\!\cdots\!25}a^{3}-\frac{57\!\cdots\!89}{80\!\cdots\!75}a^{2}+\frac{13\!\cdots\!66}{11\!\cdots\!75}a-\frac{81\!\cdots\!49}{38\!\cdots\!25}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 133207857013622.31 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{1}\cdot(2\pi)^{14}\cdot 133207857013622.31 \cdot 1}{2\cdot\sqrt{57471868152223727924656865491755923007187161136129}}\cr\approx \mathstrut & 2.62615491650965 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^29 - x^28 + 18*x^27 + 12*x^26 + 179*x^25 + 123*x^24 + 1662*x^23 - 196*x^22 + 11119*x^21 - 9104*x^20 + 47466*x^19 - 44547*x^18 + 83114*x^17 - 23886*x^16 - 121329*x^15 + 248495*x^14 - 275546*x^13 - 188738*x^12 + 573921*x^11 - 476142*x^10 + 379865*x^9 - 32019*x^8 + 20658*x^7 - 6163*x^6 - 27930*x^5 + 2012*x^4 - 1404*x^3 + 2898*x^2 - 594*x + 81)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^29 - x^28 + 18*x^27 + 12*x^26 + 179*x^25 + 123*x^24 + 1662*x^23 - 196*x^22 + 11119*x^21 - 9104*x^20 + 47466*x^19 - 44547*x^18 + 83114*x^17 - 23886*x^16 - 121329*x^15 + 248495*x^14 - 275546*x^13 - 188738*x^12 + 573921*x^11 - 476142*x^10 + 379865*x^9 - 32019*x^8 + 20658*x^7 - 6163*x^6 - 27930*x^5 + 2012*x^4 - 1404*x^3 + 2898*x^2 - 594*x + 81, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^29 - x^28 + 18*x^27 + 12*x^26 + 179*x^25 + 123*x^24 + 1662*x^23 - 196*x^22 + 11119*x^21 - 9104*x^20 + 47466*x^19 - 44547*x^18 + 83114*x^17 - 23886*x^16 - 121329*x^15 + 248495*x^14 - 275546*x^13 - 188738*x^12 + 573921*x^11 - 476142*x^10 + 379865*x^9 - 32019*x^8 + 20658*x^7 - 6163*x^6 - 27930*x^5 + 2012*x^4 - 1404*x^3 + 2898*x^2 - 594*x + 81);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^29 - x^28 + 18*x^27 + 12*x^26 + 179*x^25 + 123*x^24 + 1662*x^23 - 196*x^22 + 11119*x^21 - 9104*x^20 + 47466*x^19 - 44547*x^18 + 83114*x^17 - 23886*x^16 - 121329*x^15 + 248495*x^14 - 275546*x^13 - 188738*x^12 + 573921*x^11 - 476142*x^10 + 379865*x^9 - 32019*x^8 + 20658*x^7 - 6163*x^6 - 27930*x^5 + 2012*x^4 - 1404*x^3 + 2898*x^2 - 594*x + 81);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$D_{29}$ (as 29T2):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 58
The 16 conjugacy class representatives for $D_{29}$
Character table for $D_{29}$

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q$.
sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type $29$ ${\href{/padicField/3.2.0.1}{2} }^{14}{,}\,{\href{/padicField/3.1.0.1}{1} }$ ${\href{/padicField/5.2.0.1}{2} }^{14}{,}\,{\href{/padicField/5.1.0.1}{1} }$ $29$ $29$ ${\href{/padicField/13.2.0.1}{2} }^{14}{,}\,{\href{/padicField/13.1.0.1}{1} }$ $29$ ${\href{/padicField/19.2.0.1}{2} }^{14}{,}\,{\href{/padicField/19.1.0.1}{1} }$ ${\href{/padicField/23.2.0.1}{2} }^{14}{,}\,{\href{/padicField/23.1.0.1}{1} }$ $29$ ${\href{/padicField/31.2.0.1}{2} }^{14}{,}\,{\href{/padicField/31.1.0.1}{1} }$ ${\href{/padicField/37.2.0.1}{2} }^{14}{,}\,{\href{/padicField/37.1.0.1}{1} }$ $29$ ${\href{/padicField/43.2.0.1}{2} }^{14}{,}\,{\href{/padicField/43.1.0.1}{1} }$ $29$ ${\href{/padicField/53.2.0.1}{2} }^{14}{,}\,{\href{/padicField/53.1.0.1}{1} }$ $29$

Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(3583\) Copy content Toggle raw display $\Q_{3583}$$x$$1$$1$$0$Trivial$[\ ]$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$

Artin representations

Label Dimension Conductor Artin stem field $G$ Ind $\chi(c)$
* 1.1.1t1.a.a$1$ $1$ \(\Q\) $C_1$ $1$ $1$
1.3583.2t1.a.a$1$ $ 3583 $ \(\Q(\sqrt{-3583}) \) $C_2$ (as 2T1) $1$ $-1$
* 2.3583.29t2.a.e$2$ $ 3583 $ 29.1.57471868152223727924656865491755923007187161136129.1 $D_{29}$ (as 29T2) $1$ $0$
* 2.3583.29t2.a.f$2$ $ 3583 $ 29.1.57471868152223727924656865491755923007187161136129.1 $D_{29}$ (as 29T2) $1$ $0$
* 2.3583.29t2.a.c$2$ $ 3583 $ 29.1.57471868152223727924656865491755923007187161136129.1 $D_{29}$ (as 29T2) $1$ $0$
* 2.3583.29t2.a.n$2$ $ 3583 $ 29.1.57471868152223727924656865491755923007187161136129.1 $D_{29}$ (as 29T2) $1$ $0$
* 2.3583.29t2.a.m$2$ $ 3583 $ 29.1.57471868152223727924656865491755923007187161136129.1 $D_{29}$ (as 29T2) $1$ $0$
* 2.3583.29t2.a.h$2$ $ 3583 $ 29.1.57471868152223727924656865491755923007187161136129.1 $D_{29}$ (as 29T2) $1$ $0$
* 2.3583.29t2.a.d$2$ $ 3583 $ 29.1.57471868152223727924656865491755923007187161136129.1 $D_{29}$ (as 29T2) $1$ $0$
* 2.3583.29t2.a.b$2$ $ 3583 $ 29.1.57471868152223727924656865491755923007187161136129.1 $D_{29}$ (as 29T2) $1$ $0$
* 2.3583.29t2.a.k$2$ $ 3583 $ 29.1.57471868152223727924656865491755923007187161136129.1 $D_{29}$ (as 29T2) $1$ $0$
* 2.3583.29t2.a.g$2$ $ 3583 $ 29.1.57471868152223727924656865491755923007187161136129.1 $D_{29}$ (as 29T2) $1$ $0$
* 2.3583.29t2.a.a$2$ $ 3583 $ 29.1.57471868152223727924656865491755923007187161136129.1 $D_{29}$ (as 29T2) $1$ $0$
* 2.3583.29t2.a.l$2$ $ 3583 $ 29.1.57471868152223727924656865491755923007187161136129.1 $D_{29}$ (as 29T2) $1$ $0$
* 2.3583.29t2.a.i$2$ $ 3583 $ 29.1.57471868152223727924656865491755923007187161136129.1 $D_{29}$ (as 29T2) $1$ $0$
* 2.3583.29t2.a.j$2$ $ 3583 $ 29.1.57471868152223727924656865491755923007187161136129.1 $D_{29}$ (as 29T2) $1$ $0$

Data is given for all irreducible representations of the Galois group for the Galois closure of this field. Those marked with * are summands in the permutation representation coming from this field. Representations which appear with multiplicity greater than one are indicated by exponents on the *.