Properties

Label 29.1.358...441.1
Degree $29$
Signature $[1, 14]$
Discriminant $3.588\times 10^{48}$
Root discriminant \(47.24\)
Ramified prime $2939$
Class number $1$ (GRH)
Class group trivial (GRH)
Galois group $D_{29}$ (as 29T2)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^29 - x^28 - 7*x^27 - 50*x^26 + 119*x^25 + 495*x^24 + 59*x^23 - 530*x^22 + 637*x^21 + 2591*x^20 + 2977*x^19 + 1178*x^18 + 2213*x^17 + 5385*x^16 + 5965*x^15 + 6650*x^14 + 10883*x^13 + 16281*x^12 + 23955*x^11 + 21146*x^10 - 8059*x^9 - 7103*x^8 + 28957*x^7 + 37734*x^6 + 35524*x^5 + 2552*x^4 - 22800*x^3 - 19616*x^2 - 17024*x - 11776)
 
gp: K = bnfinit(y^29 - y^28 - 7*y^27 - 50*y^26 + 119*y^25 + 495*y^24 + 59*y^23 - 530*y^22 + 637*y^21 + 2591*y^20 + 2977*y^19 + 1178*y^18 + 2213*y^17 + 5385*y^16 + 5965*y^15 + 6650*y^14 + 10883*y^13 + 16281*y^12 + 23955*y^11 + 21146*y^10 - 8059*y^9 - 7103*y^8 + 28957*y^7 + 37734*y^6 + 35524*y^5 + 2552*y^4 - 22800*y^3 - 19616*y^2 - 17024*y - 11776, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^29 - x^28 - 7*x^27 - 50*x^26 + 119*x^25 + 495*x^24 + 59*x^23 - 530*x^22 + 637*x^21 + 2591*x^20 + 2977*x^19 + 1178*x^18 + 2213*x^17 + 5385*x^16 + 5965*x^15 + 6650*x^14 + 10883*x^13 + 16281*x^12 + 23955*x^11 + 21146*x^10 - 8059*x^9 - 7103*x^8 + 28957*x^7 + 37734*x^6 + 35524*x^5 + 2552*x^4 - 22800*x^3 - 19616*x^2 - 17024*x - 11776);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^29 - x^28 - 7*x^27 - 50*x^26 + 119*x^25 + 495*x^24 + 59*x^23 - 530*x^22 + 637*x^21 + 2591*x^20 + 2977*x^19 + 1178*x^18 + 2213*x^17 + 5385*x^16 + 5965*x^15 + 6650*x^14 + 10883*x^13 + 16281*x^12 + 23955*x^11 + 21146*x^10 - 8059*x^9 - 7103*x^8 + 28957*x^7 + 37734*x^6 + 35524*x^5 + 2552*x^4 - 22800*x^3 - 19616*x^2 - 17024*x - 11776)
 

\( x^{29} - x^{28} - 7 x^{27} - 50 x^{26} + 119 x^{25} + 495 x^{24} + 59 x^{23} - 530 x^{22} + 637 x^{21} + \cdots - 11776 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $29$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[1, 14]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(3587518960220469771354937124331329329937375710441\) \(\medspace = 2939^{14}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(47.24\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2939^{1/2}\approx 54.2125446737192$
Ramified primes:   \(2939\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\card{ \Aut(K/\Q) }$:  $1$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2}a^{4}-\frac{1}{2}a$, $\frac{1}{2}a^{5}-\frac{1}{2}a^{2}$, $\frac{1}{2}a^{6}-\frac{1}{2}a^{3}$, $\frac{1}{2}a^{7}-\frac{1}{2}a$, $\frac{1}{4}a^{8}-\frac{1}{4}a^{2}$, $\frac{1}{4}a^{9}-\frac{1}{4}a^{3}$, $\frac{1}{4}a^{10}-\frac{1}{4}a^{4}$, $\frac{1}{4}a^{11}-\frac{1}{4}a^{5}$, $\frac{1}{8}a^{12}-\frac{1}{8}a^{9}-\frac{1}{8}a^{6}+\frac{1}{8}a^{3}$, $\frac{1}{8}a^{13}-\frac{1}{8}a^{10}-\frac{1}{8}a^{7}+\frac{1}{8}a^{4}$, $\frac{1}{8}a^{14}-\frac{1}{8}a^{11}-\frac{1}{8}a^{8}+\frac{1}{8}a^{5}$, $\frac{1}{16}a^{15}-\frac{1}{16}a^{14}-\frac{1}{16}a^{13}-\frac{1}{16}a^{12}+\frac{1}{16}a^{11}+\frac{1}{16}a^{10}-\frac{1}{16}a^{9}+\frac{1}{16}a^{8}-\frac{3}{16}a^{7}-\frac{3}{16}a^{6}+\frac{3}{16}a^{5}+\frac{3}{16}a^{4}+\frac{1}{4}a^{3}-\frac{1}{4}a^{2}$, $\frac{1}{32}a^{16}+\frac{1}{16}a^{10}-\frac{1}{4}a^{7}-\frac{3}{32}a^{4}+\frac{1}{4}a$, $\frac{1}{32}a^{17}+\frac{1}{16}a^{11}-\frac{3}{32}a^{5}$, $\frac{1}{32}a^{18}-\frac{1}{16}a^{12}-\frac{1}{8}a^{9}+\frac{1}{32}a^{6}+\frac{1}{8}a^{3}$, $\frac{1}{64}a^{19}-\frac{1}{64}a^{18}-\frac{1}{64}a^{17}-\frac{1}{32}a^{15}+\frac{1}{32}a^{14}+\frac{1}{16}a^{11}+\frac{1}{32}a^{10}-\frac{3}{32}a^{9}-\frac{1}{32}a^{8}-\frac{9}{64}a^{7}-\frac{7}{64}a^{6}+\frac{5}{64}a^{5}-\frac{5}{32}a^{4}+\frac{1}{4}a^{3}-\frac{1}{8}a^{2}+\frac{1}{4}a$, $\frac{1}{64}a^{20}-\frac{1}{64}a^{17}+\frac{1}{32}a^{14}+\frac{3}{32}a^{11}+\frac{5}{64}a^{8}-\frac{5}{64}a^{5}-\frac{1}{8}a^{2}$, $\frac{1}{64}a^{21}-\frac{1}{64}a^{18}-\frac{1}{32}a^{15}-\frac{1}{16}a^{14}-\frac{1}{16}a^{13}+\frac{1}{32}a^{12}+\frac{1}{16}a^{11}+\frac{1}{16}a^{10}+\frac{1}{64}a^{9}+\frac{1}{16}a^{8}-\frac{3}{16}a^{7}+\frac{15}{64}a^{6}+\frac{3}{16}a^{5}+\frac{3}{16}a^{4}-\frac{1}{4}a^{3}-\frac{1}{4}a^{2}$, $\frac{1}{128}a^{22}-\frac{1}{128}a^{20}-\frac{1}{128}a^{18}-\frac{1}{64}a^{17}+\frac{1}{64}a^{15}+\frac{1}{32}a^{14}-\frac{3}{64}a^{13}+\frac{1}{32}a^{12}+\frac{3}{64}a^{11}-\frac{1}{128}a^{10}+\frac{7}{64}a^{9}+\frac{5}{128}a^{8}+\frac{15}{64}a^{7}-\frac{27}{128}a^{6}+\frac{5}{32}a^{5}-\frac{3}{16}a^{4}-\frac{7}{16}a^{3}+\frac{1}{4}a^{2}-\frac{1}{2}a$, $\frac{1}{128}a^{23}-\frac{1}{128}a^{21}-\frac{1}{128}a^{19}-\frac{1}{64}a^{18}-\frac{1}{64}a^{16}-\frac{1}{32}a^{15}+\frac{1}{64}a^{14}-\frac{1}{32}a^{13}-\frac{1}{64}a^{12}-\frac{9}{128}a^{11}+\frac{7}{64}a^{10}-\frac{3}{128}a^{9}-\frac{5}{64}a^{8}-\frac{19}{128}a^{7}-\frac{1}{32}a^{6}+\frac{1}{8}a^{5}-\frac{5}{32}a^{4}-\frac{3}{8}a^{3}-\frac{1}{2}a^{2}-\frac{1}{4}a$, $\frac{1}{128}a^{24}+\frac{1}{128}a^{18}-\frac{1}{16}a^{14}-\frac{1}{16}a^{13}+\frac{3}{128}a^{12}+\frac{1}{16}a^{11}+\frac{1}{16}a^{10}-\frac{1}{16}a^{9}+\frac{1}{16}a^{8}-\frac{3}{16}a^{7}+\frac{27}{128}a^{6}+\frac{3}{16}a^{5}+\frac{3}{16}a^{4}-\frac{3}{16}a^{3}-\frac{1}{4}a^{2}$, $\frac{1}{359168}a^{25}-\frac{787}{359168}a^{24}-\frac{191}{179584}a^{23}+\frac{873}{359168}a^{22}+\frac{509}{89792}a^{21}-\frac{2261}{359168}a^{20}-\frac{1617}{359168}a^{19}-\frac{363}{179584}a^{18}+\frac{987}{179584}a^{17}+\frac{1321}{89792}a^{16}-\frac{1077}{179584}a^{15}-\frac{2167}{44896}a^{14}-\frac{20347}{359168}a^{13}+\frac{9179}{359168}a^{12}-\frac{10761}{89792}a^{11}-\frac{37317}{359168}a^{10}+\frac{17671}{179584}a^{9}+\frac{1251}{15616}a^{8}-\frac{5165}{359168}a^{7}-\frac{26109}{179584}a^{6}-\frac{22227}{89792}a^{5}-\frac{4781}{22448}a^{4}+\frac{237}{976}a^{3}+\frac{1453}{11224}a^{2}-\frac{1185}{5612}a-\frac{1}{61}$, $\frac{1}{359168}a^{26}+\frac{375}{359168}a^{24}+\frac{481}{359168}a^{23}-\frac{1189}{359168}a^{22}-\frac{2155}{359168}a^{21}-\frac{505}{89792}a^{20}-\frac{2187}{359168}a^{19}-\frac{117}{7808}a^{18}-\frac{657}{179584}a^{17}-\frac{1069}{179584}a^{16}-\frac{141}{7808}a^{15}+\frac{1441}{359168}a^{14}+\frac{757}{179584}a^{13}-\frac{22173}{359168}a^{12}-\frac{36107}{359168}a^{11}+\frac{6399}{359168}a^{10}+\frac{38273}{359168}a^{9}-\frac{5423}{179584}a^{8}-\frac{11}{5888}a^{7}+\frac{2603}{89792}a^{6}+\frac{20115}{89792}a^{5}-\frac{173}{1403}a^{4}-\frac{435}{5612}a^{3}+\frac{1905}{11224}a^{2}+\frac{1711}{5612}a+\frac{6}{61}$, $\frac{1}{412420951496704}a^{27}+\frac{2076281}{6444077367136}a^{26}-\frac{2646223}{12888154734272}a^{25}-\frac{346326983169}{206210475748352}a^{24}+\frac{1463033329189}{412420951496704}a^{23}+\frac{259282335059}{206210475748352}a^{22}+\frac{183644285661}{103105237874176}a^{21}-\frac{140899861469}{103105237874176}a^{20}-\frac{1624817459419}{412420951496704}a^{19}-\frac{177118778683}{51552618937088}a^{18}-\frac{1076908980525}{103105237874176}a^{17}-\frac{42339298785}{206210475748352}a^{16}-\frac{4626194107113}{412420951496704}a^{15}+\frac{5153611907897}{206210475748352}a^{14}+\frac{342950034625}{6444077367136}a^{13}-\frac{1673674349115}{51552618937088}a^{12}+\frac{22648002286811}{412420951496704}a^{11}-\frac{7994206665053}{103105237874176}a^{10}-\frac{11549227505821}{103105237874176}a^{9}+\frac{6836322410973}{206210475748352}a^{8}-\frac{2216804329687}{9591184918528}a^{7}+\frac{247012967465}{3380499602432}a^{6}-\frac{258768458957}{1690249801216}a^{5}+\frac{11353559665101}{51552618937088}a^{4}-\frac{10291156989907}{25776309468544}a^{3}+\frac{5715030153655}{12888154734272}a^{2}-\frac{840033193837}{3222038683568}a-\frac{13727415149}{35022159604}$, $\frac{1}{11\!\cdots\!76}a^{28}-\frac{33\!\cdots\!83}{27\!\cdots\!44}a^{27}-\frac{96\!\cdots\!11}{22\!\cdots\!56}a^{26}-\frac{10\!\cdots\!17}{55\!\cdots\!88}a^{25}+\frac{22\!\cdots\!85}{11\!\cdots\!76}a^{24}-\frac{18\!\cdots\!15}{55\!\cdots\!88}a^{23}+\frac{93\!\cdots\!53}{27\!\cdots\!44}a^{22}-\frac{11\!\cdots\!53}{27\!\cdots\!44}a^{21}-\frac{75\!\cdots\!91}{11\!\cdots\!76}a^{20}-\frac{18\!\cdots\!31}{27\!\cdots\!44}a^{19}+\frac{20\!\cdots\!63}{27\!\cdots\!44}a^{18}-\frac{60\!\cdots\!61}{55\!\cdots\!88}a^{17}+\frac{75\!\cdots\!35}{11\!\cdots\!76}a^{16}+\frac{59\!\cdots\!35}{55\!\cdots\!88}a^{15}-\frac{48\!\cdots\!49}{13\!\cdots\!72}a^{14}+\frac{16\!\cdots\!49}{34\!\cdots\!68}a^{13}+\frac{10\!\cdots\!15}{18\!\cdots\!16}a^{12}-\frac{10\!\cdots\!31}{13\!\cdots\!72}a^{11}-\frac{45\!\cdots\!71}{27\!\cdots\!44}a^{10}-\frac{63\!\cdots\!55}{55\!\cdots\!88}a^{9}+\frac{41\!\cdots\!25}{35\!\cdots\!96}a^{8}+\frac{28\!\cdots\!63}{55\!\cdots\!88}a^{7}-\frac{70\!\cdots\!81}{12\!\cdots\!28}a^{6}+\frac{11\!\cdots\!47}{13\!\cdots\!72}a^{5}+\frac{11\!\cdots\!87}{69\!\cdots\!36}a^{4}-\frac{48\!\cdots\!81}{15\!\cdots\!16}a^{3}+\frac{10\!\cdots\!39}{21\!\cdots\!48}a^{2}+\frac{20\!\cdots\!43}{21\!\cdots\!48}a-\frac{99\!\cdots\!37}{23\!\cdots\!69}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  No
Index:  Not computed
Inessential primes:  $2$

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $14$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{97\!\cdots\!59}{48\!\cdots\!12}a^{28}-\frac{19\!\cdots\!97}{55\!\cdots\!88}a^{27}-\frac{38\!\cdots\!39}{34\!\cdots\!68}a^{26}-\frac{51\!\cdots\!89}{55\!\cdots\!88}a^{25}+\frac{33\!\cdots\!37}{11\!\cdots\!76}a^{24}+\frac{21\!\cdots\!61}{27\!\cdots\!44}a^{23}-\frac{54\!\cdots\!47}{13\!\cdots\!72}a^{22}-\frac{24\!\cdots\!61}{59\!\cdots\!52}a^{21}+\frac{18\!\cdots\!65}{11\!\cdots\!76}a^{20}+\frac{19\!\cdots\!19}{55\!\cdots\!88}a^{19}+\frac{10\!\cdots\!23}{27\!\cdots\!44}a^{18}+\frac{46\!\cdots\!71}{55\!\cdots\!88}a^{17}+\frac{55\!\cdots\!91}{11\!\cdots\!76}a^{16}+\frac{19\!\cdots\!91}{27\!\cdots\!44}a^{15}+\frac{17\!\cdots\!35}{27\!\cdots\!44}a^{14}+\frac{21\!\cdots\!99}{22\!\cdots\!52}a^{13}+\frac{12\!\cdots\!99}{11\!\cdots\!76}a^{12}+\frac{12\!\cdots\!43}{55\!\cdots\!88}a^{11}+\frac{75\!\cdots\!01}{27\!\cdots\!44}a^{10}+\frac{13\!\cdots\!77}{55\!\cdots\!88}a^{9}-\frac{40\!\cdots\!73}{11\!\cdots\!76}a^{8}+\frac{58\!\cdots\!23}{27\!\cdots\!44}a^{7}+\frac{26\!\cdots\!95}{13\!\cdots\!72}a^{6}+\frac{99\!\cdots\!75}{22\!\cdots\!56}a^{5}+\frac{22\!\cdots\!89}{87\!\cdots\!92}a^{4}-\frac{35\!\cdots\!29}{17\!\cdots\!84}a^{3}-\frac{39\!\cdots\!85}{17\!\cdots\!84}a^{2}-\frac{55\!\cdots\!59}{71\!\cdots\!36}a-\frac{99\!\cdots\!77}{47\!\cdots\!38}$, $\frac{60\!\cdots\!45}{55\!\cdots\!88}a^{28}-\frac{30\!\cdots\!59}{13\!\cdots\!72}a^{27}-\frac{70\!\cdots\!39}{13\!\cdots\!72}a^{26}-\frac{12\!\cdots\!53}{27\!\cdots\!44}a^{25}+\frac{20\!\cdots\!95}{11\!\cdots\!04}a^{24}+\frac{37\!\cdots\!55}{11\!\cdots\!56}a^{23}-\frac{26\!\cdots\!77}{69\!\cdots\!36}a^{22}+\frac{54\!\cdots\!41}{69\!\cdots\!36}a^{21}+\frac{95\!\cdots\!37}{55\!\cdots\!88}a^{20}+\frac{16\!\cdots\!59}{87\!\cdots\!92}a^{19}+\frac{23\!\cdots\!41}{13\!\cdots\!72}a^{18}+\frac{57\!\cdots\!19}{27\!\cdots\!44}a^{17}+\frac{56\!\cdots\!43}{91\!\cdots\!08}a^{16}+\frac{21\!\cdots\!47}{27\!\cdots\!44}a^{15}+\frac{10\!\cdots\!63}{13\!\cdots\!72}a^{14}+\frac{92\!\cdots\!33}{69\!\cdots\!36}a^{13}+\frac{92\!\cdots\!19}{55\!\cdots\!88}a^{12}+\frac{24\!\cdots\!37}{13\!\cdots\!72}a^{11}+\frac{76\!\cdots\!07}{30\!\cdots\!32}a^{10}+\frac{53\!\cdots\!11}{27\!\cdots\!44}a^{9}-\frac{10\!\cdots\!03}{11\!\cdots\!04}a^{8}+\frac{22\!\cdots\!51}{59\!\cdots\!52}a^{7}+\frac{62\!\cdots\!33}{13\!\cdots\!72}a^{6}+\frac{32\!\cdots\!65}{69\!\cdots\!36}a^{5}+\frac{83\!\cdots\!11}{34\!\cdots\!68}a^{4}-\frac{32\!\cdots\!19}{17\!\cdots\!84}a^{3}-\frac{11\!\cdots\!91}{43\!\cdots\!96}a^{2}-\frac{35\!\cdots\!59}{21\!\cdots\!48}a-\frac{34\!\cdots\!43}{23\!\cdots\!69}$, $\frac{10\!\cdots\!67}{11\!\cdots\!76}a^{28}+\frac{87\!\cdots\!57}{11\!\cdots\!76}a^{27}-\frac{41\!\cdots\!51}{69\!\cdots\!36}a^{26}-\frac{32\!\cdots\!11}{55\!\cdots\!88}a^{25}+\frac{82\!\cdots\!85}{11\!\cdots\!76}a^{24}+\frac{59\!\cdots\!47}{11\!\cdots\!76}a^{23}+\frac{57\!\cdots\!21}{55\!\cdots\!88}a^{22}+\frac{12\!\cdots\!53}{13\!\cdots\!72}a^{21}+\frac{36\!\cdots\!45}{35\!\cdots\!96}a^{20}+\frac{14\!\cdots\!71}{48\!\cdots\!12}a^{19}+\frac{19\!\cdots\!71}{27\!\cdots\!44}a^{18}+\frac{56\!\cdots\!39}{55\!\cdots\!88}a^{17}+\frac{14\!\cdots\!31}{11\!\cdots\!76}a^{16}+\frac{17\!\cdots\!29}{11\!\cdots\!76}a^{15}+\frac{10\!\cdots\!81}{55\!\cdots\!88}a^{14}+\frac{10\!\cdots\!23}{60\!\cdots\!96}a^{13}+\frac{20\!\cdots\!49}{11\!\cdots\!76}a^{12}+\frac{24\!\cdots\!35}{11\!\cdots\!76}a^{11}+\frac{49\!\cdots\!31}{13\!\cdots\!72}a^{10}+\frac{29\!\cdots\!89}{55\!\cdots\!88}a^{9}+\frac{49\!\cdots\!91}{11\!\cdots\!76}a^{8}+\frac{83\!\cdots\!41}{11\!\cdots\!76}a^{7}-\frac{13\!\cdots\!13}{55\!\cdots\!88}a^{6}-\frac{11\!\cdots\!03}{27\!\cdots\!44}a^{5}-\frac{42\!\cdots\!97}{13\!\cdots\!72}a^{4}-\frac{95\!\cdots\!01}{69\!\cdots\!36}a^{3}-\frac{17\!\cdots\!49}{34\!\cdots\!68}a^{2}+\frac{31\!\cdots\!81}{20\!\cdots\!44}a+\frac{29\!\cdots\!19}{94\!\cdots\!76}$, $\frac{13\!\cdots\!51}{27\!\cdots\!44}a^{28}-\frac{51\!\cdots\!23}{55\!\cdots\!88}a^{27}-\frac{19\!\cdots\!13}{69\!\cdots\!36}a^{26}-\frac{10\!\cdots\!41}{48\!\cdots\!68}a^{25}+\frac{37\!\cdots\!49}{48\!\cdots\!68}a^{24}+\frac{10\!\cdots\!37}{55\!\cdots\!88}a^{23}-\frac{37\!\cdots\!53}{27\!\cdots\!44}a^{22}-\frac{22\!\cdots\!99}{13\!\cdots\!72}a^{21}+\frac{43\!\cdots\!03}{89\!\cdots\!24}a^{20}+\frac{49\!\cdots\!81}{55\!\cdots\!88}a^{19}+\frac{47\!\cdots\!97}{69\!\cdots\!36}a^{18}-\frac{14\!\cdots\!73}{34\!\cdots\!68}a^{17}+\frac{78\!\cdots\!35}{69\!\cdots\!36}a^{16}+\frac{99\!\cdots\!07}{55\!\cdots\!88}a^{15}+\frac{37\!\cdots\!81}{27\!\cdots\!44}a^{14}+\frac{14\!\cdots\!71}{69\!\cdots\!36}a^{13}+\frac{10\!\cdots\!77}{27\!\cdots\!44}a^{12}+\frac{27\!\cdots\!23}{55\!\cdots\!88}a^{11}+\frac{10\!\cdots\!05}{13\!\cdots\!72}a^{10}+\frac{22\!\cdots\!53}{57\!\cdots\!88}a^{9}-\frac{10\!\cdots\!83}{13\!\cdots\!72}a^{8}+\frac{17\!\cdots\!95}{55\!\cdots\!88}a^{7}+\frac{35\!\cdots\!65}{27\!\cdots\!44}a^{6}+\frac{10\!\cdots\!79}{13\!\cdots\!72}a^{5}+\frac{76\!\cdots\!09}{69\!\cdots\!36}a^{4}-\frac{28\!\cdots\!35}{34\!\cdots\!68}a^{3}-\frac{92\!\cdots\!45}{17\!\cdots\!84}a^{2}-\frac{37\!\cdots\!49}{10\!\cdots\!72}a-\frac{28\!\cdots\!97}{47\!\cdots\!38}$, $\frac{22\!\cdots\!37}{48\!\cdots\!12}a^{28}-\frac{21\!\cdots\!73}{11\!\cdots\!76}a^{27}-\frac{32\!\cdots\!77}{13\!\cdots\!72}a^{26}-\frac{66\!\cdots\!23}{55\!\cdots\!88}a^{25}+\frac{14\!\cdots\!37}{11\!\cdots\!76}a^{24}+\frac{86\!\cdots\!01}{11\!\cdots\!76}a^{23}-\frac{44\!\cdots\!49}{55\!\cdots\!88}a^{22}-\frac{77\!\cdots\!39}{13\!\cdots\!72}a^{21}+\frac{15\!\cdots\!99}{11\!\cdots\!76}a^{20}+\frac{10\!\cdots\!91}{11\!\cdots\!76}a^{19}-\frac{84\!\cdots\!89}{27\!\cdots\!44}a^{18}-\frac{12\!\cdots\!23}{24\!\cdots\!56}a^{17}-\frac{35\!\cdots\!37}{10\!\cdots\!96}a^{16}+\frac{23\!\cdots\!35}{11\!\cdots\!76}a^{15}-\frac{22\!\cdots\!01}{55\!\cdots\!88}a^{14}-\frac{98\!\cdots\!07}{13\!\cdots\!72}a^{13}-\frac{41\!\cdots\!19}{11\!\cdots\!76}a^{12}-\frac{55\!\cdots\!11}{11\!\cdots\!76}a^{11}-\frac{82\!\cdots\!85}{69\!\cdots\!36}a^{10}-\frac{14\!\cdots\!35}{55\!\cdots\!88}a^{9}-\frac{39\!\cdots\!81}{11\!\cdots\!76}a^{8}+\frac{19\!\cdots\!23}{11\!\cdots\!76}a^{7}+\frac{27\!\cdots\!21}{55\!\cdots\!88}a^{6}-\frac{49\!\cdots\!65}{27\!\cdots\!44}a^{5}-\frac{97\!\cdots\!95}{13\!\cdots\!72}a^{4}-\frac{14\!\cdots\!81}{22\!\cdots\!56}a^{3}+\frac{83\!\cdots\!81}{34\!\cdots\!68}a^{2}+\frac{11\!\cdots\!91}{20\!\cdots\!44}a+\frac{32\!\cdots\!17}{94\!\cdots\!76}$, $\frac{35910741216911}{10\!\cdots\!72}a^{28}-\frac{16181745095931}{21\!\cdots\!44}a^{27}-\frac{1783560844403}{56\!\cdots\!44}a^{26}-\frac{15561159155975}{87\!\cdots\!76}a^{25}+\frac{16\!\cdots\!69}{53\!\cdots\!36}a^{24}+\frac{47\!\cdots\!37}{21\!\cdots\!44}a^{23}+\frac{74\!\cdots\!03}{10\!\cdots\!72}a^{22}-\frac{19\!\cdots\!51}{53\!\cdots\!36}a^{21}+\frac{16\!\cdots\!97}{10\!\cdots\!72}a^{20}+\frac{28\!\cdots\!33}{21\!\cdots\!44}a^{19}+\frac{18\!\cdots\!77}{13\!\cdots\!84}a^{18}-\frac{18081515664787}{30\!\cdots\!88}a^{17}+\frac{498541702141519}{26\!\cdots\!68}a^{16}+\frac{56\!\cdots\!63}{21\!\cdots\!44}a^{15}+\frac{29\!\cdots\!41}{10\!\cdots\!72}a^{14}+\frac{24\!\cdots\!87}{13\!\cdots\!84}a^{13}+\frac{32\!\cdots\!29}{10\!\cdots\!72}a^{12}+\frac{13\!\cdots\!47}{21\!\cdots\!44}a^{11}+\frac{43\!\cdots\!59}{53\!\cdots\!36}a^{10}+\frac{41\!\cdots\!53}{66\!\cdots\!92}a^{9}-\frac{32\!\cdots\!41}{53\!\cdots\!36}a^{8}-\frac{20\!\cdots\!45}{21\!\cdots\!44}a^{7}+\frac{15\!\cdots\!45}{10\!\cdots\!72}a^{6}+\frac{10\!\cdots\!47}{53\!\cdots\!36}a^{5}+\frac{19\!\cdots\!77}{26\!\cdots\!68}a^{4}-\frac{88\!\cdots\!99}{13\!\cdots\!84}a^{3}-\frac{12\!\cdots\!21}{66\!\cdots\!92}a^{2}-\frac{82\!\cdots\!45}{16\!\cdots\!48}a-\frac{98969079991049}{180706463928244}$, $\frac{38\!\cdots\!35}{27\!\cdots\!44}a^{28}-\frac{41\!\cdots\!31}{69\!\cdots\!36}a^{27}-\frac{60\!\cdots\!41}{69\!\cdots\!36}a^{26}-\frac{50\!\cdots\!83}{13\!\cdots\!72}a^{25}+\frac{11\!\cdots\!67}{27\!\cdots\!44}a^{24}+\frac{48\!\cdots\!87}{13\!\cdots\!72}a^{23}-\frac{17\!\cdots\!19}{69\!\cdots\!36}a^{22}-\frac{92\!\cdots\!27}{30\!\cdots\!32}a^{21}+\frac{10\!\cdots\!63}{96\!\cdots\!36}a^{20}+\frac{90\!\cdots\!97}{69\!\cdots\!36}a^{19}-\frac{10\!\cdots\!85}{15\!\cdots\!16}a^{18}-\frac{24\!\cdots\!15}{13\!\cdots\!72}a^{17}-\frac{20\!\cdots\!25}{12\!\cdots\!28}a^{16}-\frac{18\!\cdots\!83}{13\!\cdots\!72}a^{15}-\frac{13\!\cdots\!81}{69\!\cdots\!36}a^{14}-\frac{64\!\cdots\!97}{43\!\cdots\!96}a^{13}-\frac{99\!\cdots\!71}{27\!\cdots\!44}a^{12}-\frac{16\!\cdots\!95}{17\!\cdots\!84}a^{11}-\frac{85\!\cdots\!43}{69\!\cdots\!36}a^{10}-\frac{83\!\cdots\!45}{13\!\cdots\!72}a^{9}-\frac{35\!\cdots\!03}{27\!\cdots\!44}a^{8}-\frac{14\!\cdots\!45}{17\!\cdots\!68}a^{7}+\frac{49\!\cdots\!83}{34\!\cdots\!68}a^{6}+\frac{21\!\cdots\!05}{17\!\cdots\!84}a^{5}+\frac{18\!\cdots\!49}{14\!\cdots\!16}a^{4}-\frac{14\!\cdots\!75}{21\!\cdots\!48}a^{3}-\frac{57\!\cdots\!31}{43\!\cdots\!96}a^{2}-\frac{52\!\cdots\!07}{21\!\cdots\!48}a-\frac{13\!\cdots\!35}{23\!\cdots\!69}$, $\frac{83\!\cdots\!03}{15\!\cdots\!24}a^{28}-\frac{91\!\cdots\!35}{11\!\cdots\!76}a^{27}-\frac{70\!\cdots\!49}{13\!\cdots\!72}a^{26}-\frac{76\!\cdots\!91}{34\!\cdots\!68}a^{25}+\frac{76\!\cdots\!39}{91\!\cdots\!08}a^{24}+\frac{33\!\cdots\!57}{11\!\cdots\!76}a^{23}-\frac{20\!\cdots\!81}{55\!\cdots\!88}a^{22}-\frac{15\!\cdots\!01}{27\!\cdots\!44}a^{21}+\frac{33\!\cdots\!99}{27\!\cdots\!44}a^{20}+\frac{96\!\cdots\!21}{11\!\cdots\!76}a^{19}-\frac{93\!\cdots\!79}{13\!\cdots\!72}a^{18}-\frac{20\!\cdots\!77}{27\!\cdots\!44}a^{17}-\frac{24\!\cdots\!41}{55\!\cdots\!88}a^{16}+\frac{43\!\cdots\!31}{11\!\cdots\!76}a^{15}-\frac{11\!\cdots\!03}{55\!\cdots\!88}a^{14}+\frac{14\!\cdots\!55}{69\!\cdots\!36}a^{13}+\frac{26\!\cdots\!23}{43\!\cdots\!96}a^{12}-\frac{26\!\cdots\!77}{11\!\cdots\!76}a^{11}+\frac{34\!\cdots\!93}{27\!\cdots\!44}a^{10}-\frac{17\!\cdots\!27}{27\!\cdots\!44}a^{9}-\frac{12\!\cdots\!95}{55\!\cdots\!88}a^{8}+\frac{41\!\cdots\!05}{35\!\cdots\!96}a^{7}+\frac{82\!\cdots\!21}{55\!\cdots\!88}a^{6}+\frac{12\!\cdots\!33}{12\!\cdots\!28}a^{5}-\frac{21\!\cdots\!75}{13\!\cdots\!72}a^{4}-\frac{16\!\cdots\!07}{69\!\cdots\!36}a^{3}-\frac{69\!\cdots\!85}{34\!\cdots\!68}a^{2}-\frac{74\!\cdots\!45}{87\!\cdots\!92}a-\frac{10\!\cdots\!37}{94\!\cdots\!76}$, $\frac{98\!\cdots\!95}{48\!\cdots\!12}a^{28}-\frac{34\!\cdots\!15}{55\!\cdots\!88}a^{27}-\frac{90\!\cdots\!79}{13\!\cdots\!72}a^{26}-\frac{48\!\cdots\!53}{55\!\cdots\!88}a^{25}+\frac{47\!\cdots\!49}{11\!\cdots\!76}a^{24}+\frac{72\!\cdots\!45}{17\!\cdots\!84}a^{23}-\frac{12\!\cdots\!13}{13\!\cdots\!72}a^{22}-\frac{44\!\cdots\!03}{12\!\cdots\!28}a^{21}-\frac{31\!\cdots\!83}{11\!\cdots\!76}a^{20}-\frac{25\!\cdots\!95}{55\!\cdots\!88}a^{19}+\frac{10\!\cdots\!95}{27\!\cdots\!44}a^{18}-\frac{29\!\cdots\!01}{55\!\cdots\!88}a^{17}-\frac{32\!\cdots\!65}{11\!\cdots\!76}a^{16}-\frac{44\!\cdots\!49}{13\!\cdots\!72}a^{15}-\frac{65\!\cdots\!09}{27\!\cdots\!44}a^{14}-\frac{62\!\cdots\!55}{13\!\cdots\!72}a^{13}-\frac{19\!\cdots\!19}{48\!\cdots\!12}a^{12}-\frac{21\!\cdots\!63}{55\!\cdots\!88}a^{11}-\frac{13\!\cdots\!09}{27\!\cdots\!44}a^{10}-\frac{15\!\cdots\!87}{55\!\cdots\!88}a^{9}-\frac{12\!\cdots\!93}{11\!\cdots\!76}a^{8}-\frac{70\!\cdots\!25}{34\!\cdots\!68}a^{7}-\frac{77\!\cdots\!65}{69\!\cdots\!36}a^{6}+\frac{31\!\cdots\!21}{34\!\cdots\!68}a^{5}+\frac{53\!\cdots\!51}{34\!\cdots\!68}a^{4}+\frac{52\!\cdots\!09}{30\!\cdots\!48}a^{3}+\frac{10\!\cdots\!73}{17\!\cdots\!84}a^{2}-\frac{17\!\cdots\!87}{18\!\cdots\!52}a+\frac{74\!\cdots\!33}{15\!\cdots\!98}$, $\frac{22\!\cdots\!87}{27\!\cdots\!44}a^{28}-\frac{88\!\cdots\!75}{55\!\cdots\!88}a^{27}-\frac{12\!\cdots\!61}{22\!\cdots\!56}a^{26}-\frac{45\!\cdots\!95}{13\!\cdots\!72}a^{25}+\frac{19\!\cdots\!57}{13\!\cdots\!72}a^{24}+\frac{18\!\cdots\!57}{55\!\cdots\!88}a^{23}-\frac{12\!\cdots\!33}{27\!\cdots\!44}a^{22}-\frac{98\!\cdots\!15}{13\!\cdots\!72}a^{21}+\frac{31\!\cdots\!09}{27\!\cdots\!44}a^{20}+\frac{11\!\cdots\!17}{55\!\cdots\!88}a^{19}-\frac{59\!\cdots\!23}{21\!\cdots\!48}a^{18}-\frac{11\!\cdots\!33}{34\!\cdots\!68}a^{17}+\frac{12\!\cdots\!09}{74\!\cdots\!44}a^{16}+\frac{28\!\cdots\!75}{55\!\cdots\!88}a^{15}+\frac{60\!\cdots\!81}{27\!\cdots\!44}a^{14}-\frac{90\!\cdots\!21}{34\!\cdots\!68}a^{13}-\frac{12\!\cdots\!47}{45\!\cdots\!04}a^{12}+\frac{22\!\cdots\!51}{55\!\cdots\!88}a^{11}+\frac{19\!\cdots\!93}{13\!\cdots\!72}a^{10}+\frac{30\!\cdots\!73}{34\!\cdots\!68}a^{9}-\frac{50\!\cdots\!93}{19\!\cdots\!44}a^{8}-\frac{86\!\cdots\!49}{55\!\cdots\!88}a^{7}+\frac{82\!\cdots\!29}{27\!\cdots\!44}a^{6}+\frac{28\!\cdots\!59}{13\!\cdots\!72}a^{5}+\frac{90\!\cdots\!41}{69\!\cdots\!36}a^{4}-\frac{89\!\cdots\!73}{44\!\cdots\!92}a^{3}-\frac{65\!\cdots\!99}{40\!\cdots\!88}a^{2}-\frac{19\!\cdots\!35}{43\!\cdots\!96}a-\frac{68\!\cdots\!87}{47\!\cdots\!38}$, $\frac{11\!\cdots\!83}{11\!\cdots\!76}a^{28}-\frac{42\!\cdots\!95}{24\!\cdots\!56}a^{27}-\frac{10\!\cdots\!45}{15\!\cdots\!16}a^{26}-\frac{25\!\cdots\!43}{55\!\cdots\!88}a^{25}+\frac{17\!\cdots\!95}{11\!\cdots\!76}a^{24}+\frac{26\!\cdots\!69}{60\!\cdots\!64}a^{23}-\frac{10\!\cdots\!27}{34\!\cdots\!68}a^{22}-\frac{18\!\cdots\!49}{27\!\cdots\!44}a^{21}+\frac{94\!\cdots\!59}{11\!\cdots\!76}a^{20}+\frac{23\!\cdots\!01}{11\!\cdots\!04}a^{19}+\frac{33\!\cdots\!61}{27\!\cdots\!44}a^{18}-\frac{62\!\cdots\!47}{55\!\cdots\!88}a^{17}+\frac{51\!\cdots\!81}{11\!\cdots\!76}a^{16}+\frac{33\!\cdots\!49}{13\!\cdots\!72}a^{15}+\frac{11\!\cdots\!91}{27\!\cdots\!44}a^{14}+\frac{90\!\cdots\!57}{13\!\cdots\!72}a^{13}+\frac{47\!\cdots\!49}{11\!\cdots\!76}a^{12}+\frac{43\!\cdots\!75}{55\!\cdots\!88}a^{11}+\frac{35\!\cdots\!07}{27\!\cdots\!44}a^{10}+\frac{19\!\cdots\!03}{55\!\cdots\!88}a^{9}-\frac{30\!\cdots\!43}{11\!\cdots\!76}a^{8}-\frac{10\!\cdots\!13}{13\!\cdots\!72}a^{7}+\frac{18\!\cdots\!79}{69\!\cdots\!36}a^{6}+\frac{78\!\cdots\!03}{44\!\cdots\!92}a^{5}+\frac{77\!\cdots\!75}{34\!\cdots\!68}a^{4}-\frac{98\!\cdots\!83}{87\!\cdots\!92}a^{3}-\frac{30\!\cdots\!77}{17\!\cdots\!84}a^{2}+\frac{11\!\cdots\!49}{43\!\cdots\!96}a-\frac{20\!\cdots\!35}{15\!\cdots\!98}$, $\frac{19\!\cdots\!13}{27\!\cdots\!44}a^{28}-\frac{56\!\cdots\!39}{59\!\cdots\!52}a^{27}-\frac{65\!\cdots\!33}{13\!\cdots\!72}a^{26}-\frac{57\!\cdots\!61}{17\!\cdots\!84}a^{25}+\frac{26\!\cdots\!95}{27\!\cdots\!44}a^{24}+\frac{28\!\cdots\!37}{89\!\cdots\!24}a^{23}-\frac{13\!\cdots\!07}{13\!\cdots\!72}a^{22}-\frac{51\!\cdots\!41}{13\!\cdots\!72}a^{21}+\frac{48\!\cdots\!57}{59\!\cdots\!52}a^{20}+\frac{44\!\cdots\!87}{27\!\cdots\!44}a^{19}+\frac{22\!\cdots\!97}{43\!\cdots\!96}a^{18}+\frac{24\!\cdots\!93}{13\!\cdots\!72}a^{17}+\frac{61\!\cdots\!65}{27\!\cdots\!44}a^{16}+\frac{57\!\cdots\!95}{27\!\cdots\!44}a^{15}+\frac{74\!\cdots\!15}{69\!\cdots\!36}a^{14}+\frac{15\!\cdots\!95}{13\!\cdots\!72}a^{13}+\frac{38\!\cdots\!51}{27\!\cdots\!44}a^{12}+\frac{11\!\cdots\!27}{27\!\cdots\!44}a^{11}+\frac{30\!\cdots\!57}{34\!\cdots\!68}a^{10}+\frac{16\!\cdots\!83}{34\!\cdots\!68}a^{9}-\frac{36\!\cdots\!37}{27\!\cdots\!44}a^{8}-\frac{10\!\cdots\!93}{27\!\cdots\!44}a^{7}+\frac{92\!\cdots\!53}{13\!\cdots\!72}a^{6}-\frac{27\!\cdots\!21}{69\!\cdots\!36}a^{5}-\frac{18\!\cdots\!97}{34\!\cdots\!68}a^{4}-\frac{29\!\cdots\!15}{17\!\cdots\!84}a^{3}+\frac{18\!\cdots\!61}{87\!\cdots\!92}a^{2}+\frac{22\!\cdots\!84}{12\!\cdots\!09}a-\frac{16\!\cdots\!27}{23\!\cdots\!69}$, $\frac{12\!\cdots\!31}{11\!\cdots\!76}a^{28}+\frac{42\!\cdots\!67}{48\!\cdots\!12}a^{27}-\frac{10\!\cdots\!39}{13\!\cdots\!72}a^{26}-\frac{39\!\cdots\!95}{55\!\cdots\!88}a^{25}+\frac{19\!\cdots\!09}{11\!\cdots\!76}a^{24}+\frac{24\!\cdots\!53}{35\!\cdots\!96}a^{23}+\frac{68\!\cdots\!85}{55\!\cdots\!88}a^{22}+\frac{15\!\cdots\!21}{17\!\cdots\!84}a^{21}+\frac{11\!\cdots\!51}{11\!\cdots\!76}a^{20}+\frac{38\!\cdots\!45}{11\!\cdots\!76}a^{19}+\frac{22\!\cdots\!55}{27\!\cdots\!44}a^{18}+\frac{62\!\cdots\!43}{55\!\cdots\!88}a^{17}+\frac{14\!\cdots\!39}{11\!\cdots\!76}a^{16}+\frac{17\!\cdots\!81}{11\!\cdots\!76}a^{15}+\frac{15\!\cdots\!17}{91\!\cdots\!08}a^{14}+\frac{21\!\cdots\!81}{13\!\cdots\!72}a^{13}+\frac{15\!\cdots\!29}{11\!\cdots\!76}a^{12}+\frac{19\!\cdots\!83}{11\!\cdots\!76}a^{11}+\frac{46\!\cdots\!77}{13\!\cdots\!72}a^{10}+\frac{29\!\cdots\!29}{55\!\cdots\!88}a^{9}+\frac{43\!\cdots\!95}{11\!\cdots\!76}a^{8}-\frac{10\!\cdots\!35}{11\!\cdots\!76}a^{7}-\frac{24\!\cdots\!73}{55\!\cdots\!88}a^{6}-\frac{15\!\cdots\!59}{27\!\cdots\!44}a^{5}-\frac{47\!\cdots\!97}{13\!\cdots\!72}a^{4}-\frac{64\!\cdots\!29}{69\!\cdots\!36}a^{3}-\frac{54\!\cdots\!21}{34\!\cdots\!68}a^{2}+\frac{48\!\cdots\!63}{87\!\cdots\!92}a+\frac{50\!\cdots\!11}{94\!\cdots\!76}$, $\frac{82\!\cdots\!87}{13\!\cdots\!72}a^{28}-\frac{11\!\cdots\!03}{69\!\cdots\!36}a^{27}-\frac{10\!\cdots\!93}{17\!\cdots\!84}a^{26}-\frac{90\!\cdots\!21}{34\!\cdots\!68}a^{25}+\frac{19\!\cdots\!49}{13\!\cdots\!72}a^{24}+\frac{54\!\cdots\!17}{15\!\cdots\!16}a^{23}-\frac{75\!\cdots\!15}{17\!\cdots\!84}a^{22}-\frac{71\!\cdots\!43}{34\!\cdots\!68}a^{21}-\frac{38\!\cdots\!49}{13\!\cdots\!72}a^{20}-\frac{20\!\cdots\!99}{87\!\cdots\!92}a^{19}-\frac{29\!\cdots\!29}{69\!\cdots\!36}a^{18}-\frac{81\!\cdots\!69}{69\!\cdots\!36}a^{17}-\frac{31\!\cdots\!87}{13\!\cdots\!72}a^{16}-\frac{12\!\cdots\!29}{34\!\cdots\!68}a^{15}-\frac{15\!\cdots\!27}{34\!\cdots\!68}a^{14}-\frac{12\!\cdots\!67}{22\!\cdots\!56}a^{13}-\frac{82\!\cdots\!05}{13\!\cdots\!72}a^{12}-\frac{40\!\cdots\!75}{69\!\cdots\!36}a^{11}-\frac{20\!\cdots\!75}{34\!\cdots\!68}a^{10}-\frac{51\!\cdots\!21}{69\!\cdots\!36}a^{9}-\frac{19\!\cdots\!39}{13\!\cdots\!72}a^{8}-\frac{19\!\cdots\!45}{11\!\cdots\!76}a^{7}-\frac{88\!\cdots\!85}{69\!\cdots\!36}a^{6}-\frac{12\!\cdots\!89}{34\!\cdots\!68}a^{5}+\frac{15\!\cdots\!11}{17\!\cdots\!84}a^{4}+\frac{10\!\cdots\!03}{87\!\cdots\!92}a^{3}+\frac{35\!\cdots\!33}{43\!\cdots\!96}a^{2}+\frac{94\!\cdots\!55}{21\!\cdots\!48}a+\frac{14\!\cdots\!44}{81\!\cdots\!61}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 191758984500558.16 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{1}\cdot(2\pi)^{14}\cdot 191758984500558.16 \cdot 1}{2\cdot\sqrt{3587518960220469771354937124331329329937375710441}}\cr\approx \mathstrut & 15.1313185970062 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^29 - x^28 - 7*x^27 - 50*x^26 + 119*x^25 + 495*x^24 + 59*x^23 - 530*x^22 + 637*x^21 + 2591*x^20 + 2977*x^19 + 1178*x^18 + 2213*x^17 + 5385*x^16 + 5965*x^15 + 6650*x^14 + 10883*x^13 + 16281*x^12 + 23955*x^11 + 21146*x^10 - 8059*x^9 - 7103*x^8 + 28957*x^7 + 37734*x^6 + 35524*x^5 + 2552*x^4 - 22800*x^3 - 19616*x^2 - 17024*x - 11776)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^29 - x^28 - 7*x^27 - 50*x^26 + 119*x^25 + 495*x^24 + 59*x^23 - 530*x^22 + 637*x^21 + 2591*x^20 + 2977*x^19 + 1178*x^18 + 2213*x^17 + 5385*x^16 + 5965*x^15 + 6650*x^14 + 10883*x^13 + 16281*x^12 + 23955*x^11 + 21146*x^10 - 8059*x^9 - 7103*x^8 + 28957*x^7 + 37734*x^6 + 35524*x^5 + 2552*x^4 - 22800*x^3 - 19616*x^2 - 17024*x - 11776, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^29 - x^28 - 7*x^27 - 50*x^26 + 119*x^25 + 495*x^24 + 59*x^23 - 530*x^22 + 637*x^21 + 2591*x^20 + 2977*x^19 + 1178*x^18 + 2213*x^17 + 5385*x^16 + 5965*x^15 + 6650*x^14 + 10883*x^13 + 16281*x^12 + 23955*x^11 + 21146*x^10 - 8059*x^9 - 7103*x^8 + 28957*x^7 + 37734*x^6 + 35524*x^5 + 2552*x^4 - 22800*x^3 - 19616*x^2 - 17024*x - 11776);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^29 - x^28 - 7*x^27 - 50*x^26 + 119*x^25 + 495*x^24 + 59*x^23 - 530*x^22 + 637*x^21 + 2591*x^20 + 2977*x^19 + 1178*x^18 + 2213*x^17 + 5385*x^16 + 5965*x^15 + 6650*x^14 + 10883*x^13 + 16281*x^12 + 23955*x^11 + 21146*x^10 - 8059*x^9 - 7103*x^8 + 28957*x^7 + 37734*x^6 + 35524*x^5 + 2552*x^4 - 22800*x^3 - 19616*x^2 - 17024*x - 11776);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$D_{29}$ (as 29T2):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 58
The 16 conjugacy class representatives for $D_{29}$
Character table for $D_{29}$

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q$.
sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type ${\href{/padicField/2.2.0.1}{2} }^{14}{,}\,{\href{/padicField/2.1.0.1}{1} }$ $29$ $29$ $29$ $29$ $29$ $29$ $29$ ${\href{/padicField/23.2.0.1}{2} }^{14}{,}\,{\href{/padicField/23.1.0.1}{1} }$ ${\href{/padicField/29.2.0.1}{2} }^{14}{,}\,{\href{/padicField/29.1.0.1}{1} }$ ${\href{/padicField/31.2.0.1}{2} }^{14}{,}\,{\href{/padicField/31.1.0.1}{1} }$ $29$ ${\href{/padicField/41.2.0.1}{2} }^{14}{,}\,{\href{/padicField/41.1.0.1}{1} }$ ${\href{/padicField/43.2.0.1}{2} }^{14}{,}\,{\href{/padicField/43.1.0.1}{1} }$ ${\href{/padicField/47.2.0.1}{2} }^{14}{,}\,{\href{/padicField/47.1.0.1}{1} }$ $29$ ${\href{/padicField/59.2.0.1}{2} }^{14}{,}\,{\href{/padicField/59.1.0.1}{1} }$

Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2939\) Copy content Toggle raw display $\Q_{2939}$$x$$1$$1$$0$Trivial$[\ ]$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$

Artin representations

Label Dimension Conductor Artin stem field $G$ Ind $\chi(c)$
* 1.1.1t1.a.a$1$ $1$ \(\Q\) $C_1$ $1$ $1$
1.2939.2t1.a.a$1$ $ 2939 $ \(\Q(\sqrt{-2939}) \) $C_2$ (as 2T1) $1$ $-1$
* 2.2939.29t2.a.k$2$ $ 2939 $ 29.1.3587518960220469771354937124331329329937375710441.1 $D_{29}$ (as 29T2) $1$ $0$
* 2.2939.29t2.a.g$2$ $ 2939 $ 29.1.3587518960220469771354937124331329329937375710441.1 $D_{29}$ (as 29T2) $1$ $0$
* 2.2939.29t2.a.n$2$ $ 2939 $ 29.1.3587518960220469771354937124331329329937375710441.1 $D_{29}$ (as 29T2) $1$ $0$
* 2.2939.29t2.a.c$2$ $ 2939 $ 29.1.3587518960220469771354937124331329329937375710441.1 $D_{29}$ (as 29T2) $1$ $0$
* 2.2939.29t2.a.j$2$ $ 2939 $ 29.1.3587518960220469771354937124331329329937375710441.1 $D_{29}$ (as 29T2) $1$ $0$
* 2.2939.29t2.a.l$2$ $ 2939 $ 29.1.3587518960220469771354937124331329329937375710441.1 $D_{29}$ (as 29T2) $1$ $0$
* 2.2939.29t2.a.b$2$ $ 2939 $ 29.1.3587518960220469771354937124331329329937375710441.1 $D_{29}$ (as 29T2) $1$ $0$
* 2.2939.29t2.a.d$2$ $ 2939 $ 29.1.3587518960220469771354937124331329329937375710441.1 $D_{29}$ (as 29T2) $1$ $0$
* 2.2939.29t2.a.e$2$ $ 2939 $ 29.1.3587518960220469771354937124331329329937375710441.1 $D_{29}$ (as 29T2) $1$ $0$
* 2.2939.29t2.a.f$2$ $ 2939 $ 29.1.3587518960220469771354937124331329329937375710441.1 $D_{29}$ (as 29T2) $1$ $0$
* 2.2939.29t2.a.i$2$ $ 2939 $ 29.1.3587518960220469771354937124331329329937375710441.1 $D_{29}$ (as 29T2) $1$ $0$
* 2.2939.29t2.a.h$2$ $ 2939 $ 29.1.3587518960220469771354937124331329329937375710441.1 $D_{29}$ (as 29T2) $1$ $0$
* 2.2939.29t2.a.a$2$ $ 2939 $ 29.1.3587518960220469771354937124331329329937375710441.1 $D_{29}$ (as 29T2) $1$ $0$
* 2.2939.29t2.a.m$2$ $ 2939 $ 29.1.3587518960220469771354937124331329329937375710441.1 $D_{29}$ (as 29T2) $1$ $0$

Data is given for all irreducible representations of the Galois group for the Galois closure of this field. Those marked with * are summands in the permutation representation coming from this field. Representations which appear with multiplicity greater than one are indicated by exponents on the *.