Properties

Label 29.1.227...357.1
Degree $29$
Signature $[1, 14]$
Discriminant $2.275\times 10^{54}$
Root discriminant \(74.88\)
Ramified primes see page
Class number $1$ (GRH)
Class group trivial (GRH)
Galois group $S_{29}$ (as 29T8)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^29 + 3*x - 1)
 
gp: K = bnfinit(y^29 + 3*y - 1, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^29 + 3*x - 1);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^29 + 3*x - 1)
 

\( x^{29} + 3x - 1 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $29$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[1, 14]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(2274789759221598409627081921061651046871631560367033357\) \(\medspace = 17\cdot 41\cdot 74959\cdot 160217\cdot 2662789\cdot 25396823\cdot 76318073627\cdot 52654144463043283\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(74.88\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $17^{1/2}41^{1/2}74959^{1/2}160217^{1/2}2662789^{1/2}25396823^{1/2}76318073627^{1/2}52654144463043283^{1/2}\approx 1.508240617150194e+27$
Ramified primes:   \(17\), \(41\), \(74959\), \(160217\), \(2662789\), \(25396823\), \(76318073627\), \(52654144463043283\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  $\Q(\sqrt{22747\!\cdots\!33357}$)
$\card{ \Aut(K/\Q) }$:  $1$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $a^{27}$, $a^{28}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Yes
Index:  $1$
Inessential primes:  None

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $14$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $a$, $a^{15}+2a^{8}+2a$, $a^{28}-a^{27}+a^{26}-a^{24}+a^{23}-a^{21}+a^{20}-a^{18}+a^{17}-a^{15}+a^{14}-a^{12}+a^{11}-a^{9}+a^{8}-a^{6}+a^{5}-a^{3}+a^{2}+1$, $a^{25}+a^{24}+a^{23}+a^{22}+a^{19}-2a^{17}-a^{16}-a^{14}-2a^{13}-a^{12}+a^{9}+3a^{6}+2a^{5}+a^{3}+2a^{2}-2$, $a^{27}-a^{23}+a^{20}+2a^{19}-2a^{18}-2a^{17}+a^{15}+3a^{14}-3a^{12}-a^{11}-a^{10}+3a^{9}+3a^{8}-2a^{7}-2a^{6}-2a^{5}+a^{4}+4a^{3}-2a^{2}+1$, $a^{28}-2a^{27}+a^{26}+a^{25}-3a^{20}+2a^{19}+a^{18}-3a^{17}+6a^{16}-2a^{15}-5a^{14}+7a^{13}-7a^{12}-a^{11}+10a^{10}-9a^{9}+4a^{8}+6a^{7}-13a^{6}+7a^{5}+a^{4}-9a^{3}+11a^{2}-2a-1$, $a^{28}+a^{27}+2a^{26}+a^{23}-a^{22}+a^{20}-a^{19}+a^{18}+2a^{17}-a^{16}-3a^{13}-a^{12}-a^{11}-3a^{10}+a^{9}+2a^{8}+4a^{6}+4a^{5}+2a^{3}-a^{2}-5a+3$, $a^{28}-2a^{27}+2a^{25}-2a^{24}+3a^{22}-3a^{21}+a^{20}+3a^{19}-4a^{18}+2a^{17}+2a^{16}-4a^{15}+2a^{14}+2a^{13}-5a^{12}+2a^{11}+3a^{10}-7a^{9}+5a^{8}+2a^{7}-8a^{6}+8a^{5}-a^{4}-6a^{3}+9a^{2}-3a-1$, $a^{28}+a^{27}+2a^{26}-2a^{24}-a^{23}+2a^{21}+3a^{20}-3a^{18}-2a^{17}+a^{16}+3a^{15}+3a^{14}-4a^{12}-2a^{11}+2a^{10}+2a^{9}+3a^{8}-4a^{6}-a^{5}+a^{3}+4a^{2}+1$, $2a^{28}+2a^{27}+2a^{26}+a^{25}+a^{23}-a^{22}-2a^{21}-a^{20}-2a^{19}-4a^{18}-3a^{17}-3a^{16}-6a^{15}-5a^{14}-5a^{13}-6a^{12}-7a^{11}-5a^{10}-6a^{9}-8a^{8}-5a^{7}-6a^{6}-8a^{5}-6a^{4}-3a^{3}-7a^{2}-5a+4$, $2a^{28}-2a^{27}+a^{26}-a^{24}+a^{23}-a^{22}+2a^{21}-2a^{20}+a^{19}-a^{18}+a^{17}-a^{14}+2a^{13}-3a^{12}+4a^{11}-6a^{10}+9a^{9}-11a^{8}+13a^{7}-16a^{6}+17a^{5}-16a^{4}+16a^{3}-16a^{2}+14a-5$, $6a^{28}-7a^{27}+13a^{25}-9a^{24}-3a^{23}+12a^{22}-3a^{21}-11a^{20}+9a^{19}+6a^{18}-20a^{17}+9a^{16}+6a^{15}-14a^{14}-8a^{13}+18a^{12}-14a^{11}-17a^{10}+19a^{9}-8a^{8}-21a^{7}+7a^{6}+15a^{5}-35a^{4}+4a^{3}+21a^{2}-28a+6$, $3a^{28}+a^{27}+2a^{26}+2a^{25}-2a^{24}-a^{23}-4a^{21}-4a^{20}-2a^{18}-4a^{17}+2a^{16}-a^{15}-2a^{14}+a^{13}+5a^{12}+3a^{10}+7a^{9}+2a^{8}+6a^{6}+a^{5}-7a^{4}-4a^{2}-11a+5$, $4a^{28}+3a^{27}-8a^{26}-a^{25}+4a^{24}-3a^{23}-2a^{22}+6a^{21}-6a^{19}+2a^{18}+2a^{17}+a^{16}+3a^{15}+3a^{14}-6a^{13}+5a^{12}+2a^{11}-a^{10}+4a^{9}+13a^{8}-12a^{7}-3a^{6}+13a^{5}+6a^{4}-14a^{3}+16a^{2}+8a-5$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 6546753152959768.0 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{1}\cdot(2\pi)^{14}\cdot 6546753152959768.0 \cdot 1}{2\cdot\sqrt{2274789759221598409627081921061651046871631560367033357}}\cr\approx \mathstrut & 0.648744204035480 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^29 + 3*x - 1)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^29 + 3*x - 1, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^29 + 3*x - 1);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^29 + 3*x - 1);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$S_{29}$ (as 29T8):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A non-solvable group of order 8841761993739701954543616000000
The 4565 conjugacy class representatives for $S_{29}$ are not computed
Character table for $S_{29}$ is not computed

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q$.
sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type $27{,}\,{\href{/padicField/2.2.0.1}{2} }$ $28{,}\,{\href{/padicField/3.1.0.1}{1} }$ $28{,}\,{\href{/padicField/5.1.0.1}{1} }$ $29$ ${\href{/padicField/11.12.0.1}{12} }{,}\,{\href{/padicField/11.5.0.1}{5} }^{2}{,}\,{\href{/padicField/11.3.0.1}{3} }^{2}{,}\,{\href{/padicField/11.1.0.1}{1} }$ ${\href{/padicField/13.11.0.1}{11} }{,}\,{\href{/padicField/13.9.0.1}{9} }{,}\,{\href{/padicField/13.5.0.1}{5} }{,}\,{\href{/padicField/13.3.0.1}{3} }{,}\,{\href{/padicField/13.1.0.1}{1} }$ R $20{,}\,{\href{/padicField/19.6.0.1}{6} }{,}\,{\href{/padicField/19.3.0.1}{3} }$ $16{,}\,{\href{/padicField/23.9.0.1}{9} }{,}\,{\href{/padicField/23.2.0.1}{2} }^{2}$ $28{,}\,{\href{/padicField/29.1.0.1}{1} }$ ${\href{/padicField/31.9.0.1}{9} }{,}\,{\href{/padicField/31.7.0.1}{7} }^{2}{,}\,{\href{/padicField/31.2.0.1}{2} }^{2}{,}\,{\href{/padicField/31.1.0.1}{1} }^{2}$ ${\href{/padicField/37.13.0.1}{13} }^{2}{,}\,{\href{/padicField/37.3.0.1}{3} }$ R ${\href{/padicField/43.13.0.1}{13} }{,}\,{\href{/padicField/43.7.0.1}{7} }^{2}{,}\,{\href{/padicField/43.1.0.1}{1} }^{2}$ $16{,}\,{\href{/padicField/47.7.0.1}{7} }{,}\,{\href{/padicField/47.4.0.1}{4} }{,}\,{\href{/padicField/47.1.0.1}{1} }^{2}$ $25{,}\,{\href{/padicField/53.2.0.1}{2} }{,}\,{\href{/padicField/53.1.0.1}{1} }^{2}$ ${\href{/padicField/59.12.0.1}{12} }{,}\,{\href{/padicField/59.9.0.1}{9} }{,}\,{\href{/padicField/59.5.0.1}{5} }{,}\,{\href{/padicField/59.2.0.1}{2} }{,}\,{\href{/padicField/59.1.0.1}{1} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(17\) Copy content Toggle raw display $\Q_{17}$$x + 14$$1$$1$$0$Trivial$[\ ]$
$\Q_{17}$$x + 14$$1$$1$$0$Trivial$[\ ]$
17.2.0.1$x^{2} + 16 x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
17.2.1.1$x^{2} + 17$$2$$1$$1$$C_2$$[\ ]_{2}$
17.23.0.1$x^{23} + 15 x^{2} + 16 x + 14$$1$$23$$0$$C_{23}$$[\ ]^{23}$
\(41\) Copy content Toggle raw display 41.2.1.2$x^{2} + 123$$2$$1$$1$$C_2$$[\ ]_{2}$
41.13.0.1$x^{13} + 13 x + 35$$1$$13$$0$$C_{13}$$[\ ]^{13}$
41.14.0.1$x^{14} + 12 x^{7} + 15 x^{6} + 4 x^{5} + 27 x^{4} + 11 x^{3} + 39 x^{2} + 10 x + 6$$1$$14$$0$$C_{14}$$[\ ]^{14}$
\(74959\) Copy content Toggle raw display $\Q_{74959}$$x$$1$$1$$0$Trivial$[\ ]$
$\Q_{74959}$$x$$1$$1$$0$Trivial$[\ ]$
Deg $2$$1$$2$$0$$C_2$$[\ ]^{2}$
Deg $2$$1$$2$$0$$C_2$$[\ ]^{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $8$$1$$8$$0$$C_8$$[\ ]^{8}$
Deg $13$$1$$13$$0$$C_{13}$$[\ ]^{13}$
\(160217\) Copy content Toggle raw display $\Q_{160217}$$x$$1$$1$$0$Trivial$[\ ]$
Deg $2$$1$$2$$0$$C_2$$[\ ]^{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $24$$1$$24$$0$$C_{24}$$[\ ]^{24}$
\(2662789\) Copy content Toggle raw display $\Q_{2662789}$$x$$1$$1$$0$Trivial$[\ ]$
Deg $2$$1$$2$$0$$C_2$$[\ ]^{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $3$$1$$3$$0$$C_3$$[\ ]^{3}$
Deg $7$$1$$7$$0$$C_7$$[\ ]^{7}$
Deg $14$$1$$14$$0$$C_{14}$$[\ ]^{14}$
\(25396823\) Copy content Toggle raw display $\Q_{25396823}$$x$$1$$1$$0$Trivial$[\ ]$
$\Q_{25396823}$$x$$1$$1$$0$Trivial$[\ ]$
$\Q_{25396823}$$x$$1$$1$$0$Trivial$[\ ]$
$\Q_{25396823}$$x$$1$$1$$0$Trivial$[\ ]$
Deg $2$$1$$2$$0$$C_2$$[\ ]^{2}$
Deg $2$$1$$2$$0$$C_2$$[\ ]^{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $3$$1$$3$$0$$C_3$$[\ ]^{3}$
Deg $3$$1$$3$$0$$C_3$$[\ ]^{3}$
Deg $13$$1$$13$$0$$C_{13}$$[\ ]^{13}$
\(76318073627\) Copy content Toggle raw display $\Q_{76318073627}$$x$$1$$1$$0$Trivial$[\ ]$
$\Q_{76318073627}$$x$$1$$1$$0$Trivial$[\ ]$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $3$$1$$3$$0$$C_3$$[\ ]^{3}$
Deg $9$$1$$9$$0$$C_9$$[\ ]^{9}$
Deg $13$$1$$13$$0$$C_{13}$$[\ ]^{13}$
\(52654144463043283\) Copy content Toggle raw display $\Q_{52654144463043283}$$x$$1$$1$$0$Trivial$[\ ]$
Deg $2$$1$$2$$0$$C_2$$[\ ]^{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $4$$1$$4$$0$$C_4$$[\ ]^{4}$
Deg $4$$1$$4$$0$$C_4$$[\ ]^{4}$
Deg $16$$1$$16$$0$$C_{16}$$[\ ]^{16}$