Normalized defining polynomial
\( x^{29} - 8 x^{28} + 42 x^{27} - 91 x^{26} + 71 x^{25} - 172 x^{24} + 980 x^{23} - 2477 x^{22} + 4032 x^{21} - 5998 x^{20} + 8995 x^{19} - 12396 x^{18} + 15464 x^{17} - 17477 x^{16} + 17661 x^{15} - 16777 x^{14} + 14899 x^{13} - 10749 x^{12} + 6197 x^{11} - 2594 x^{10} - 1233 x^{9} + 2318 x^{8} - 113 x^{7} - 855 x^{6} + 1459 x^{5} - 2625 x^{4} + 2079 x^{3} - 978 x^{2} + 419 x + 1 \)
Invariants
Degree: | $29$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
| |
Signature: | $[1, 14]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
| |
Discriminant: | \(190430537333205962921320156798047381287357677729\)\(\medspace = 2383^{14}\) | sage: K.disc()
gp: K.disc
magma: Discriminant(Integers(K));
| |
Root discriminant: | $42.69$ | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
| |
Ramified primes: | $2383$ | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(Integers(K)));
| |
$|\Aut(K/\Q)|$: | $1$ | ||
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{3} a^{8} - \frac{1}{3}$, $\frac{1}{3} a^{9} - \frac{1}{3} a$, $\frac{1}{3} a^{10} - \frac{1}{3} a^{2}$, $\frac{1}{3} a^{11} - \frac{1}{3} a^{3}$, $\frac{1}{3} a^{12} - \frac{1}{3} a^{4}$, $\frac{1}{3} a^{13} - \frac{1}{3} a^{5}$, $\frac{1}{3} a^{14} - \frac{1}{3} a^{6}$, $\frac{1}{9} a^{15} + \frac{1}{9} a^{14} + \frac{1}{9} a^{13} + \frac{1}{9} a^{12} + \frac{1}{9} a^{11} + \frac{1}{9} a^{10} + \frac{1}{9} a^{9} + \frac{1}{9} a^{8} - \frac{4}{9} a^{7} - \frac{4}{9} a^{6} - \frac{4}{9} a^{5} - \frac{4}{9} a^{4} - \frac{4}{9} a^{3} - \frac{4}{9} a^{2} - \frac{4}{9} a - \frac{4}{9}$, $\frac{1}{9} a^{16} + \frac{1}{9} a^{8} - \frac{2}{9}$, $\frac{1}{9} a^{17} + \frac{1}{9} a^{9} - \frac{2}{9} a$, $\frac{1}{9} a^{18} + \frac{1}{9} a^{10} - \frac{2}{9} a^{2}$, $\frac{1}{9} a^{19} + \frac{1}{9} a^{11} - \frac{2}{9} a^{3}$, $\frac{1}{45} a^{20} - \frac{1}{45} a^{19} + \frac{2}{45} a^{18} + \frac{2}{45} a^{17} - \frac{1}{45} a^{16} - \frac{1}{45} a^{15} - \frac{7}{45} a^{14} - \frac{1}{45} a^{13} - \frac{1}{9} a^{11} + \frac{7}{45} a^{10} + \frac{4}{45} a^{9} - \frac{2}{45} a^{8} - \frac{14}{45} a^{7} + \frac{2}{9} a^{6} + \frac{22}{45} a^{5} + \frac{4}{9} a^{4} - \frac{1}{5} a^{3} - \frac{2}{15} a^{2} + \frac{1}{3} a - \frac{7}{15}$, $\frac{1}{45} a^{21} + \frac{1}{45} a^{19} - \frac{1}{45} a^{18} + \frac{1}{45} a^{17} - \frac{2}{45} a^{16} + \frac{2}{45} a^{15} + \frac{2}{45} a^{14} - \frac{2}{15} a^{13} + \frac{1}{9} a^{12} - \frac{1}{15} a^{11} + \frac{1}{45} a^{10} - \frac{1}{15} a^{9} - \frac{2}{15} a^{8} + \frac{1}{45} a^{7} - \frac{8}{45} a^{6} + \frac{17}{45} a^{5} + \frac{16}{45} a^{4} + \frac{1}{9} a^{3} - \frac{2}{15} a^{2} + \frac{14}{45} a - \frac{16}{45}$, $\frac{1}{135} a^{22} - \frac{1}{135} a^{21} + \frac{4}{135} a^{19} + \frac{1}{27} a^{18} - \frac{1}{27} a^{16} - \frac{4}{135} a^{15} + \frac{1}{15} a^{14} - \frac{8}{135} a^{13} - \frac{13}{135} a^{12} - \frac{2}{45} a^{11} - \frac{11}{135} a^{10} - \frac{22}{135} a^{9} - \frac{2}{45} a^{8} - \frac{13}{27} a^{7} - \frac{5}{27} a^{6} - \frac{11}{45} a^{5} - \frac{56}{135} a^{4} - \frac{67}{135} a^{3} - \frac{1}{15} a^{2} - \frac{4}{27} a - \frac{58}{135}$, $\frac{1}{135} a^{23} - \frac{1}{135} a^{21} + \frac{1}{135} a^{20} - \frac{1}{45} a^{19} - \frac{1}{135} a^{18} + \frac{4}{135} a^{17} - \frac{2}{45} a^{16} - \frac{7}{135} a^{15} + \frac{7}{135} a^{14} + \frac{4}{45} a^{13} + \frac{11}{135} a^{12} + \frac{13}{135} a^{11} + \frac{7}{45} a^{10} + \frac{1}{27} a^{9} + \frac{2}{27} a^{8} + \frac{4}{45} a^{7} - \frac{28}{135} a^{6} - \frac{1}{27} a^{5} - \frac{11}{45} a^{4} - \frac{4}{135} a^{3} - \frac{41}{135} a^{2} - \frac{1}{45} a - \frac{5}{27}$, $\frac{1}{135} a^{24} + \frac{1}{9} a^{8} - \frac{16}{135}$, $\frac{1}{2295} a^{25} + \frac{2}{2295} a^{24} - \frac{7}{2295} a^{23} + \frac{2}{2295} a^{22} + \frac{8}{2295} a^{21} + \frac{2}{2295} a^{20} - \frac{22}{2295} a^{19} - \frac{43}{2295} a^{18} - \frac{52}{2295} a^{17} + \frac{122}{2295} a^{16} + \frac{53}{2295} a^{15} - \frac{298}{2295} a^{14} - \frac{67}{2295} a^{13} - \frac{28}{2295} a^{12} - \frac{7}{2295} a^{11} - \frac{73}{2295} a^{10} - \frac{112}{2295} a^{9} - \frac{103}{2295} a^{8} - \frac{1072}{2295} a^{7} - \frac{28}{2295} a^{6} + \frac{653}{2295} a^{5} + \frac{512}{2295} a^{4} - \frac{322}{2295} a^{3} - \frac{478}{2295} a^{2} - \frac{458}{2295} a - \frac{5}{153}$, $\frac{1}{20655} a^{26} - \frac{1}{6885} a^{25} - \frac{2}{1215} a^{24} + \frac{4}{4131} a^{23} - \frac{2}{20655} a^{22} + \frac{1}{255} a^{21} + \frac{2}{20655} a^{20} - \frac{341}{20655} a^{19} + \frac{7}{153} a^{18} + \frac{518}{20655} a^{17} + \frac{164}{4131} a^{16} - \frac{182}{6885} a^{15} - \frac{2164}{20655} a^{14} - \frac{622}{4131} a^{13} + \frac{1087}{6885} a^{12} - \frac{470}{4131} a^{11} - \frac{286}{4131} a^{10} + \frac{205}{1377} a^{9} + \frac{2639}{20655} a^{8} + \frac{10126}{20655} a^{7} + \frac{916}{6885} a^{6} + \frac{8093}{20655} a^{5} + \frac{5176}{20655} a^{4} + \frac{587}{6885} a^{3} + \frac{3496}{20655} a^{2} - \frac{2171}{20655} a + \frac{7039}{20655}$, $\frac{1}{119117385} a^{27} - \frac{2564}{119117385} a^{26} - \frac{22546}{119117385} a^{25} + \frac{163486}{119117385} a^{24} + \frac{53738}{39705795} a^{23} + \frac{400906}{119117385} a^{22} + \frac{1144649}{119117385} a^{21} - \frac{100477}{13235265} a^{20} + \frac{62698}{119117385} a^{19} + \frac{3106148}{119117385} a^{18} + \frac{1372672}{39705795} a^{17} + \frac{1246973}{23823477} a^{16} + \frac{444833}{119117385} a^{15} - \frac{2936167}{39705795} a^{14} - \frac{4276}{7006905} a^{13} - \frac{3153319}{119117385} a^{12} - \frac{1041382}{39705795} a^{11} - \frac{15334577}{119117385} a^{10} + \frac{1573253}{119117385} a^{9} - \frac{9031}{60435} a^{8} - \frac{4949653}{23823477} a^{7} - \frac{59524924}{119117385} a^{6} + \frac{6300764}{13235265} a^{5} + \frac{16270786}{119117385} a^{4} + \frac{2873897}{7006905} a^{3} - \frac{16947886}{119117385} a^{2} + \frac{2148520}{23823477} a + \frac{58725184}{119117385}$, $\frac{1}{249485287787876730958538085} a^{28} - \frac{12669999357061084}{27720587531986303439837565} a^{27} + \frac{1955010382106624234269}{83161762595958910319512695} a^{26} + \frac{10133047450293764679955}{49897057557575346191707617} a^{25} + \frac{226304621386182419966537}{83161762595958910319512695} a^{24} + \frac{920606886874985467171901}{249485287787876730958538085} a^{23} - \frac{17319393523191119475470}{5544117506397260687967513} a^{22} - \frac{120368892651015679005854}{249485287787876730958538085} a^{21} + \frac{1453400523682921380313481}{249485287787876730958538085} a^{20} - \frac{3730207808083354140846967}{83161762595958910319512695} a^{19} + \frac{26129358191281929732398}{1393772557474171681332615} a^{18} + \frac{2796364479861213752296766}{249485287787876730958538085} a^{17} - \frac{515616947887515660035258}{16632352519191782063902539} a^{16} + \frac{10815053086580310778040617}{249485287787876730958538085} a^{15} - \frac{38054509308166383014981119}{249485287787876730958538085} a^{14} - \frac{5019358150436410071781}{110148029928422397774189} a^{13} - \frac{20308792111813689394580144}{249485287787876730958538085} a^{12} + \frac{21814107273652042405982}{1182394728852496355253735} a^{11} + \frac{13497808965053574825476011}{83161762595958910319512695} a^{10} + \frac{19875513589401603476471989}{249485287787876730958538085} a^{9} - \frac{3976663776765842695889512}{249485287787876730958538085} a^{8} + \frac{38842611928869969847844728}{83161762595958910319512695} a^{7} + \frac{2440890337599319550160673}{6742845615888560296176705} a^{6} - \frac{114138405353724200534068576}{249485287787876730958538085} a^{5} - \frac{90564790424432587186039492}{249485287787876730958538085} a^{4} - \frac{193192605214265157060094}{14675605163992748879914005} a^{3} + \frac{17674841176971540557318908}{49897057557575346191707617} a^{2} - \frac{21115999905643669366708135}{49897057557575346191707617} a + \frac{16645904323499286496410652}{249485287787876730958538085}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
Rank: | $14$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
| |
Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K!f(g): g in Generators(UK)];
| |
Regulator: | \( 6346995452652.517 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
|
Class number formula
Galois group
A solvable group of order 58 |
The 16 conjugacy class representatives for $D_{29}$ |
Character table for $D_{29}$ |
Intermediate fields
The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | $29$ | ${\href{/LocalNumberField/3.2.0.1}{2} }^{14}{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }$ | ${\href{/LocalNumberField/5.2.0.1}{2} }^{14}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }$ | $29$ | $29$ | $29$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{14}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | $29$ | $29$ | $29$ | $29$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{14}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | $29$ | $29$ | $29$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{14}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | $29$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
2383 | Data not computed |