Normalized defining polynomial
\( x^{29} - 12 x^{28} + 55 x^{27} - 97 x^{26} + 34 x^{25} + 11 x^{24} + 138 x^{23} - 214 x^{22} + 43 x^{21} + 224 x^{20} - 104 x^{19} - 50 x^{18} + 748 x^{17} - 1490 x^{16} + 1965 x^{15} - 460 x^{14} - 575 x^{13} + 2189 x^{12} - 1286 x^{11} - 53 x^{10} + 3178 x^{9} - 2804 x^{8} + 3117 x^{7} - 748 x^{6} + 585 x^{5} + 965 x^{4} + 480 x^{3} + 353 x^{2} + 369 x - 1 \)
Invariants
Degree: | $29$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
| |
Signature: | $[1, 14]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
| |
Discriminant: | \(107084423880431831080183695981363790438987742689\)\(\medspace = 2287^{14}\) | sage: K.disc()
gp: K.disc
magma: Discriminant(Integers(K));
| |
Root discriminant: | $41.85$ | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
| |
Ramified primes: | $2287$ | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(Integers(K)));
| |
$|\Aut(K/\Q)|$: | $1$ | ||
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{3} a^{8} - \frac{1}{3}$, $\frac{1}{3} a^{9} - \frac{1}{3} a$, $\frac{1}{3} a^{10} - \frac{1}{3} a^{2}$, $\frac{1}{3} a^{11} - \frac{1}{3} a^{3}$, $\frac{1}{3} a^{12} - \frac{1}{3} a^{4}$, $\frac{1}{9} a^{13} - \frac{1}{9} a^{12} + \frac{1}{9} a^{11} + \frac{1}{9} a^{10} - \frac{1}{9} a^{8} - \frac{1}{3} a^{6} - \frac{4}{9} a^{5} + \frac{4}{9} a^{4} - \frac{1}{9} a^{3} + \frac{2}{9} a^{2} + \frac{1}{3} a - \frac{2}{9}$, $\frac{1}{9} a^{14} - \frac{1}{9} a^{11} + \frac{1}{9} a^{10} - \frac{1}{9} a^{9} - \frac{1}{9} a^{8} - \frac{1}{3} a^{7} + \frac{2}{9} a^{6} + \frac{1}{3} a^{4} + \frac{4}{9} a^{3} - \frac{4}{9} a^{2} + \frac{1}{9} a - \frac{2}{9}$, $\frac{1}{9} a^{15} - \frac{1}{9} a^{12} + \frac{1}{9} a^{11} - \frac{1}{9} a^{10} - \frac{1}{9} a^{9} + \frac{2}{9} a^{7} + \frac{1}{3} a^{5} + \frac{4}{9} a^{4} - \frac{4}{9} a^{3} + \frac{1}{9} a^{2} - \frac{2}{9} a - \frac{1}{3}$, $\frac{1}{9} a^{16} + \frac{1}{9} a^{8} - \frac{2}{9}$, $\frac{1}{9} a^{17} + \frac{1}{9} a^{9} - \frac{2}{9} a$, $\frac{1}{45} a^{18} - \frac{1}{45} a^{17} + \frac{2}{45} a^{15} - \frac{2}{45} a^{13} - \frac{1}{15} a^{12} - \frac{1}{15} a^{10} + \frac{2}{15} a^{9} + \frac{2}{45} a^{8} + \frac{13}{45} a^{7} - \frac{7}{15} a^{6} + \frac{14}{45} a^{5} + \frac{7}{15} a^{4} - \frac{1}{3} a^{3} - \frac{4}{45} a^{2} - \frac{8}{45} a + \frac{16}{45}$, $\frac{1}{135} a^{19} - \frac{1}{135} a^{18} + \frac{2}{135} a^{16} + \frac{1}{45} a^{14} - \frac{1}{45} a^{13} - \frac{1}{9} a^{12} + \frac{22}{135} a^{11} - \frac{19}{135} a^{10} - \frac{1}{45} a^{9} - \frac{7}{135} a^{8} + \frac{2}{5} a^{7} + \frac{8}{45} a^{6} + \frac{7}{45} a^{5} - \frac{2}{9} a^{4} - \frac{14}{135} a^{3} + \frac{47}{135} a^{2} - \frac{8}{45} a + \frac{10}{27}$, $\frac{1}{405} a^{20} - \frac{1}{405} a^{18} + \frac{2}{405} a^{17} + \frac{17}{405} a^{16} + \frac{2}{45} a^{15} + \frac{1}{27} a^{14} + \frac{4}{135} a^{13} + \frac{7}{405} a^{12} + \frac{11}{135} a^{11} + \frac{53}{405} a^{10} + \frac{10}{81} a^{9} - \frac{28}{405} a^{8} - \frac{8}{45} a^{7} - \frac{1}{27} a^{6} + \frac{62}{135} a^{5} + \frac{136}{405} a^{4} - \frac{44}{135} a^{3} - \frac{7}{405} a^{2} + \frac{146}{405} a + \frac{13}{81}$, $\frac{1}{405} a^{21} - \frac{1}{405} a^{19} + \frac{2}{405} a^{18} + \frac{17}{405} a^{17} + \frac{2}{45} a^{16} + \frac{1}{27} a^{15} + \frac{4}{135} a^{14} + \frac{7}{405} a^{13} + \frac{11}{135} a^{12} + \frac{53}{405} a^{11} + \frac{10}{81} a^{10} - \frac{28}{405} a^{9} + \frac{7}{45} a^{8} - \frac{1}{27} a^{7} + \frac{62}{135} a^{6} + \frac{136}{405} a^{5} - \frac{44}{135} a^{4} - \frac{7}{405} a^{3} + \frac{146}{405} a^{2} + \frac{13}{81} a - \frac{1}{3}$, $\frac{1}{405} a^{22} - \frac{1}{405} a^{19} + \frac{1}{405} a^{18} - \frac{7}{405} a^{17} - \frac{19}{405} a^{16} - \frac{2}{135} a^{15} + \frac{13}{405} a^{14} - \frac{7}{135} a^{12} + \frac{62}{405} a^{11} + \frac{46}{405} a^{10} - \frac{31}{405} a^{9} - \frac{13}{405} a^{8} + \frac{41}{135} a^{7} - \frac{113}{405} a^{6} + \frac{11}{45} a^{5} + \frac{52}{135} a^{4} - \frac{124}{405} a^{3} - \frac{191}{405} a^{2} + \frac{47}{405} a - \frac{103}{405}$, $\frac{1}{1215} a^{23} + \frac{4}{1215} a^{19} - \frac{11}{1215} a^{18} - \frac{17}{1215} a^{17} + \frac{62}{1215} a^{16} + \frac{31}{1215} a^{15} - \frac{22}{405} a^{14} - \frac{7}{135} a^{13} - \frac{22}{405} a^{12} - \frac{16}{243} a^{11} - \frac{34}{243} a^{10} - \frac{152}{1215} a^{9} + \frac{119}{1215} a^{8} + \frac{247}{1215} a^{7} - \frac{98}{405} a^{6} + \frac{13}{27} a^{5} + \frac{139}{405} a^{4} - \frac{1}{243} a^{3} - \frac{359}{1215} a^{2} + \frac{16}{1215} a + \frac{106}{243}$, $\frac{1}{3645} a^{24} + \frac{1}{3645} a^{23} - \frac{1}{1215} a^{21} + \frac{1}{3645} a^{20} - \frac{4}{3645} a^{19} - \frac{4}{3645} a^{18} - \frac{58}{1215} a^{17} - \frac{4}{1215} a^{16} + \frac{11}{729} a^{15} + \frac{4}{243} a^{14} + \frac{2}{243} a^{13} - \frac{347}{3645} a^{12} + \frac{32}{3645} a^{11} + \frac{98}{3645} a^{10} - \frac{53}{405} a^{9} - \frac{5}{81} a^{8} - \frac{238}{729} a^{7} + \frac{52}{1215} a^{6} - \frac{29}{405} a^{5} - \frac{653}{3645} a^{4} - \frac{1702}{3645} a^{3} - \frac{463}{3645} a^{2} + \frac{259}{1215} a - \frac{1528}{3645}$, $\frac{1}{3645} a^{25} - \frac{1}{3645} a^{23} - \frac{1}{1215} a^{22} + \frac{4}{3645} a^{21} + \frac{4}{3645} a^{20} - \frac{17}{3645} a^{18} + \frac{2}{405} a^{17} - \frac{37}{729} a^{16} + \frac{86}{3645} a^{15} + \frac{7}{243} a^{14} - \frac{188}{3645} a^{13} - \frac{44}{3645} a^{12} + \frac{121}{1215} a^{11} + \frac{226}{3645} a^{10} - \frac{13}{135} a^{9} - \frac{488}{3645} a^{8} - \frac{1651}{3645} a^{7} - \frac{508}{1215} a^{6} + \frac{143}{729} a^{5} - \frac{68}{3645} a^{4} - \frac{388}{1215} a^{3} + \frac{934}{3645} a^{2} - \frac{1477}{3645} a + \frac{212}{729}$, $\frac{1}{3645} a^{26} + \frac{1}{3645} a^{23} + \frac{4}{3645} a^{22} + \frac{1}{3645} a^{21} + \frac{1}{3645} a^{20} - \frac{1}{405} a^{19} - \frac{19}{3645} a^{18} - \frac{1}{729} a^{17} - \frac{29}{729} a^{16} - \frac{152}{3645} a^{15} + \frac{79}{3645} a^{14} + \frac{202}{3645} a^{13} - \frac{182}{3645} a^{12} - \frac{43}{405} a^{11} + \frac{452}{3645} a^{10} + \frac{199}{3645} a^{9} - \frac{304}{3645} a^{8} - \frac{353}{3645} a^{7} - \frac{416}{3645} a^{6} - \frac{1409}{3645} a^{5} + \frac{649}{3645} a^{4} - \frac{59}{135} a^{3} - \frac{587}{3645} a^{2} - \frac{271}{729} a + \frac{1682}{3645}$, $\frac{1}{346275} a^{27} - \frac{14}{115425} a^{26} + \frac{37}{346275} a^{25} + \frac{29}{346275} a^{24} + \frac{43}{346275} a^{23} - \frac{341}{346275} a^{22} - \frac{31}{346275} a^{21} + \frac{179}{346275} a^{20} - \frac{194}{346275} a^{19} - \frac{47}{18225} a^{18} + \frac{9188}{346275} a^{17} - \frac{874}{18225} a^{16} - \frac{3791}{346275} a^{15} - \frac{13787}{346275} a^{14} - \frac{913}{18225} a^{13} + \frac{31121}{346275} a^{12} + \frac{52921}{346275} a^{11} - \frac{56}{18225} a^{10} - \frac{12469}{346275} a^{9} + \frac{13169}{346275} a^{8} + \frac{2275}{13851} a^{7} + \frac{141289}{346275} a^{6} + \frac{151982}{346275} a^{5} + \frac{6722}{13851} a^{4} + \frac{12283}{115425} a^{3} - \frac{30193}{69255} a^{2} + \frac{68323}{346275} a + \frac{10436}{115425}$, $\frac{1}{1626427001721958364925} a^{28} - \frac{846713975122591}{1626427001721958364925} a^{27} + \frac{26323939276662373}{325285400344391672985} a^{26} + \frac{50364120216921737}{542142333907319454975} a^{25} + \frac{139088161850022817}{1626427001721958364925} a^{24} + \frac{530343898760202652}{1626427001721958364925} a^{23} + \frac{389108011330849808}{1626427001721958364925} a^{22} + \frac{53923149680633822}{180714111302439818325} a^{21} - \frac{14568380555586946}{325285400344391672985} a^{20} - \frac{14865433777381211}{24275029876447139775} a^{19} - \frac{274307689210619288}{108428466781463890995} a^{18} + \frac{88952611739078633722}{1626427001721958364925} a^{17} - \frac{24153092934563326904}{542142333907319454975} a^{16} - \frac{71384271753318450188}{1626427001721958364925} a^{15} - \frac{86881272790218735979}{1626427001721958364925} a^{14} - \frac{6351971612269213304}{180714111302439818325} a^{13} + \frac{2822017130522643016}{24275029876447139775} a^{12} - \frac{219467508305968619168}{1626427001721958364925} a^{11} + \frac{56939101438483511299}{542142333907319454975} a^{10} + \frac{173268049379867956}{3424056845730438663} a^{9} - \frac{48475091872806068282}{542142333907319454975} a^{8} - \frac{66758935340761069361}{1626427001721958364925} a^{7} - \frac{605149746088217014144}{1626427001721958364925} a^{6} + \frac{34981907385533104108}{180714111302439818325} a^{5} - \frac{206119433252652407972}{542142333907319454975} a^{4} - \frac{48276760410957487501}{1626427001721958364925} a^{3} - \frac{618527947870122193232}{1626427001721958364925} a^{2} - \frac{684969437184629005874}{1626427001721958364925} a - \frac{410629689511917775132}{1626427001721958364925}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
Rank: | $14$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
| |
Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K!f(g): g in Generators(UK)];
| |
Regulator: | \( 4657227595142.479 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
|
Class number formula
Galois group
A solvable group of order 58 |
The 16 conjugacy class representatives for $D_{29}$ |
Character table for $D_{29}$ |
Intermediate fields
The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | $29$ | ${\href{/LocalNumberField/3.2.0.1}{2} }^{14}{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }$ | ${\href{/LocalNumberField/5.2.0.1}{2} }^{14}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }$ | $29$ | $29$ | $29$ | $29$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{14}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | $29$ | $29$ | $29$ | $29$ | $29$ | $29$ | $29$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{14}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{14}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
2287 | Data not computed |