Normalized defining polynomial
\( x^{28} - 3 x^{27} - 90 x^{26} + 251 x^{25} + 3319 x^{24} - 8554 x^{23} - 66698 x^{22} + 158075 x^{21} + 814194 x^{20} - 1759929 x^{19} - 6351581 x^{18} + 12347113 x^{17} + 32407795 x^{16} - 55419172 x^{15} - 108806380 x^{14} + 158408220 x^{13} + 238211940 x^{12} - 281263173 x^{11} - 332007770 x^{10} + 294247369 x^{9} + 283623445 x^{8} - 164124215 x^{7} - 141255320 x^{6} + 39437768 x^{5} + 37970686 x^{4} - 617338 x^{3} - 4146895 x^{2} - 804372 x - 43367 \)
Invariants
| Degree: | $28$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[28, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(8649266893998089480085334923884882761653761146262454088937777=17^{21}\cdot 29^{24}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $150.08$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $17, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(493=17\cdot 29\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{493}(256,·)$, $\chi_{493}(1,·)$, $\chi_{493}(132,·)$, $\chi_{493}(455,·)$, $\chi_{493}(140,·)$, $\chi_{493}(458,·)$, $\chi_{493}(268,·)$, $\chi_{493}(16,·)$, $\chi_{493}(81,·)$, $\chi_{493}(339,·)$, $\chi_{493}(480,·)$, $\chi_{493}(407,·)$, $\chi_{493}(152,·)$, $\chi_{493}(285,·)$, $\chi_{493}(30,·)$, $\chi_{493}(344,·)$, $\chi_{493}(103,·)$, $\chi_{493}(169,·)$, $\chi_{493}(426,·)$, $\chi_{493}(429,·)$, $\chi_{493}(239,·)$, $\chi_{493}(52,·)$, $\chi_{493}(373,·)$, $\chi_{493}(310,·)$, $\chi_{493}(489,·)$, $\chi_{493}(378,·)$, $\chi_{493}(123,·)$, $\chi_{493}(460,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $\frac{1}{2} a^{21} - \frac{1}{2} a^{20} - \frac{1}{2} a^{19} - \frac{1}{2} a^{18} - \frac{1}{2} a^{16} - \frac{1}{2} a^{12} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{22} - \frac{1}{2} a^{18} - \frac{1}{2} a^{17} - \frac{1}{2} a^{16} - \frac{1}{2} a^{13} - \frac{1}{2} a^{12} - \frac{1}{2} a^{10} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{23} - \frac{1}{2} a^{19} - \frac{1}{2} a^{18} - \frac{1}{2} a^{17} - \frac{1}{2} a^{14} - \frac{1}{2} a^{13} - \frac{1}{2} a^{11} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{34} a^{24} + \frac{3}{34} a^{23} + \frac{4}{17} a^{22} + \frac{9}{34} a^{20} - \frac{3}{17} a^{19} + \frac{8}{17} a^{18} - \frac{7}{34} a^{17} + \frac{6}{17} a^{16} + \frac{3}{34} a^{15} - \frac{6}{17} a^{14} - \frac{3}{34} a^{13} + \frac{7}{34} a^{12} - \frac{3}{34} a^{11} - \frac{4}{17} a^{10} + \frac{7}{34} a^{9} - \frac{11}{34} a^{8} + \frac{15}{34} a^{7} + \frac{11}{34} a^{6} + \frac{3}{17} a^{5} - \frac{1}{34} a^{4} - \frac{1}{2} a$, $\frac{1}{578} a^{25} - \frac{7}{578} a^{24} - \frac{73}{578} a^{23} + \frac{73}{578} a^{22} - \frac{38}{289} a^{21} + \frac{159}{578} a^{20} + \frac{89}{289} a^{19} + \frac{44}{289} a^{18} - \frac{78}{289} a^{17} + \frac{223}{578} a^{16} - \frac{106}{289} a^{15} - \frac{52}{289} a^{14} + \frac{275}{578} a^{13} - \frac{209}{578} a^{12} - \frac{63}{578} a^{11} + \frac{137}{289} a^{10} + \frac{87}{289} a^{9} - \frac{79}{578} a^{8} - \frac{241}{578} a^{7} + \frac{185}{578} a^{6} + \frac{80}{289} a^{5} + \frac{163}{578} a^{4} + \frac{3}{17} a^{3} + \frac{7}{17} a^{2} - \frac{4}{17} a - \frac{3}{17}$, $\frac{1}{302294} a^{26} - \frac{209}{302294} a^{25} - \frac{1973}{151147} a^{24} - \frac{1099}{151147} a^{23} + \frac{6751}{302294} a^{22} + \frac{67531}{302294} a^{21} - \frac{65073}{302294} a^{20} - \frac{35597}{151147} a^{19} + \frac{148617}{302294} a^{18} + \frac{32041}{302294} a^{17} - \frac{128065}{302294} a^{16} - \frac{36143}{302294} a^{15} - \frac{87517}{302294} a^{14} + \frac{86395}{302294} a^{13} - \frac{29823}{302294} a^{12} - \frac{125465}{302294} a^{11} - \frac{24149}{302294} a^{10} - \frac{64440}{151147} a^{9} + \frac{45896}{151147} a^{8} + \frac{63487}{302294} a^{7} + \frac{7517}{302294} a^{6} - \frac{34107}{151147} a^{5} + \frac{37777}{302294} a^{4} - \frac{21}{8891} a^{3} - \frac{1017}{17782} a^{2} + \frac{2692}{8891} a - \frac{1151}{17782}$, $\frac{1}{123803170985568473820111284772668484961498782734697691530346889588959933481611951778} a^{27} + \frac{15544463186023399912164436573378353496463955465032492591608271922378088451053}{61901585492784236910055642386334242480749391367348845765173444794479966740805975889} a^{26} - \frac{18674750078143700758779713141261968847895024428308417797501688881719298198672599}{123803170985568473820111284772668484961498782734697691530346889588959933481611951778} a^{25} + \frac{228616628641687855611072875870741856519961628454410243754738608594982077691503768}{61901585492784236910055642386334242480749391367348845765173444794479966740805975889} a^{24} - \frac{5952638650864500329327647157919110403788036532237004765695396980246157193023375489}{61901585492784236910055642386334242480749391367348845765173444794479966740805975889} a^{23} - \frac{4084668378305219256460258170764040481806484857136786327102941764700574495272580297}{123803170985568473820111284772668484961498782734697691530346889588959933481611951778} a^{22} - \frac{11996939301499308547311834362640519536438850018169641067063400768663215459906684790}{61901585492784236910055642386334242480749391367348845765173444794479966740805975889} a^{21} + \frac{6574629182947231636146444490648925873651587761941931624987987674854307068507138319}{123803170985568473820111284772668484961498782734697691530346889588959933481611951778} a^{20} - \frac{10920106775666915797340164804281160255412652660135743724024127057730221180336018345}{61901585492784236910055642386334242480749391367348845765173444794479966740805975889} a^{19} + \frac{2742231332799163222249756073739601180344121394503081485832525566660337940304329730}{61901585492784236910055642386334242480749391367348845765173444794479966740805975889} a^{18} + \frac{29480961423929046748001820925948929530173708619161439242456556523152145426289224848}{61901585492784236910055642386334242480749391367348845765173444794479966740805975889} a^{17} - \frac{43905438447084414032204003208793067363617626125573835487861537050646628979839869395}{123803170985568473820111284772668484961498782734697691530346889588959933481611951778} a^{16} - \frac{18066832377764564469080305202012564661160511124708933551324561876409128830206918703}{61901585492784236910055642386334242480749391367348845765173444794479966740805975889} a^{15} - \frac{34552824883735887676008645178506826488137006580254648694795280883570004371039675767}{123803170985568473820111284772668484961498782734697691530346889588959933481611951778} a^{14} - \frac{18802249983340641797108863060975096747463054088323700429879333287176667802386968939}{61901585492784236910055642386334242480749391367348845765173444794479966740805975889} a^{13} - \frac{21807110865030063675847460671601085611087222060887703645048789174857679911433785449}{123803170985568473820111284772668484961498782734697691530346889588959933481611951778} a^{12} + \frac{52470654999120280055206476571542500075096918660651202276757802385457516059044224665}{123803170985568473820111284772668484961498782734697691530346889588959933481611951778} a^{11} + \frac{13742868008125769708692635450466263138514292758095765657700810669992455775604791210}{61901585492784236910055642386334242480749391367348845765173444794479966740805975889} a^{10} - \frac{12702517704950792287712567081349258911707582294764676241655956459168716190407590460}{61901585492784236910055642386334242480749391367348845765173444794479966740805975889} a^{9} + \frac{29808710930443703613587707714114044737978511649276846771993039379410654748473874313}{61901585492784236910055642386334242480749391367348845765173444794479966740805975889} a^{8} + \frac{38367083229116225104592529327463695967799092625590889116909888796164279590326696547}{123803170985568473820111284772668484961498782734697691530346889588959933481611951778} a^{7} - \frac{26527386393490298394184480341360065956187209026433145436093669132434408224075121395}{61901585492784236910055642386334242480749391367348845765173444794479966740805975889} a^{6} + \frac{9720270316842158863030235911961979581806521959933251085475256354411855150542370198}{61901585492784236910055642386334242480749391367348845765173444794479966740805975889} a^{5} + \frac{32200628722373368711940297771973284001711168383546105524802411054773734091894088685}{123803170985568473820111284772668484961498782734697691530346889588959933481611951778} a^{4} + \frac{328216095304381385271618315842521054386549149076718718525486221750047630180326916}{3641269734869660994709155434490249557691140668667579162657261458498821572988586817} a^{3} - \frac{15991021955751308094768667515492305309647018597489145325890427271045684354588369}{428384674690548352318724168763558771493075372784421077959677818646920185057480802} a^{2} - \frac{2570749000685819322656264728319544292504868119698303939318623036377488770867822655}{7282539469739321989418310868980499115382281337335158325314522916997643145977173634} a - \frac{438832651249292087837881936961470620678010842407212250581430163298067375459606}{1427389155182148567114525846526950042215264864236604924601043300077938680120967}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $27$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4582667171549212600000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 28 |
| The 28 conjugacy class representatives for $C_{28}$ |
| Character table for $C_{28}$ is not computed |
Intermediate fields
| \(\Q(\sqrt{17}) \), 4.4.4913.1, 7.7.594823321.1, 14.14.145183888628314852626522593.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.14.0.1}{14} }^{2}$ | $28$ | $28$ | $28$ | $28$ | ${\href{/LocalNumberField/13.7.0.1}{7} }^{4}$ | R | ${\href{/LocalNumberField/19.14.0.1}{14} }^{2}$ | $28$ | R | $28$ | $28$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{7}$ | ${\href{/LocalNumberField/43.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/47.7.0.1}{7} }^{4}$ | ${\href{/LocalNumberField/53.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{14}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $17$ | 17.4.3.1 | $x^{4} - 17$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 17.4.3.1 | $x^{4} - 17$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 17.4.3.1 | $x^{4} - 17$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 17.4.3.1 | $x^{4} - 17$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 17.4.3.1 | $x^{4} - 17$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 17.4.3.1 | $x^{4} - 17$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 17.4.3.1 | $x^{4} - 17$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 29 | Data not computed | ||||||