Normalized defining polynomial
\( x^{28} - 84 x^{26} - 21 x^{25} + 2870 x^{24} + 1365 x^{23} - 52311 x^{22} - 35384 x^{21} + 558551 x^{20} + 476021 x^{19} - 3616123 x^{18} - 3640098 x^{17} + 14278698 x^{16} + 16439787 x^{15} - 33849902 x^{14} - 44286151 x^{13} + 45977568 x^{12} + 70220969 x^{11} - 31909787 x^{10} - 63232365 x^{9} + 7294518 x^{8} + 30363184 x^{7} + 2492042 x^{6} - 6990543 x^{5} - 1496096 x^{4} + 540274 x^{3} + 194915 x^{2} + 17822 x + 361 \)
Invariants
| Degree: | $28$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[28, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(857574960063654015836849375042748140931725025177001953125=5^{21}\cdot 7^{50}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $107.98$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(245=5\cdot 7^{2}\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{245}(64,·)$, $\chi_{245}(1,·)$, $\chi_{245}(132,·)$, $\chi_{245}(134,·)$, $\chi_{245}(71,·)$, $\chi_{245}(202,·)$, $\chi_{245}(204,·)$, $\chi_{245}(13,·)$, $\chi_{245}(141,·)$, $\chi_{245}(83,·)$, $\chi_{245}(97,·)$, $\chi_{245}(153,·)$, $\chi_{245}(27,·)$, $\chi_{245}(29,·)$, $\chi_{245}(223,·)$, $\chi_{245}(48,·)$, $\chi_{245}(99,·)$, $\chi_{245}(36,·)$, $\chi_{245}(167,·)$, $\chi_{245}(169,·)$, $\chi_{245}(106,·)$, $\chi_{245}(237,·)$, $\chi_{245}(239,·)$, $\chi_{245}(176,·)$, $\chi_{245}(211,·)$, $\chi_{245}(118,·)$, $\chi_{245}(188,·)$, $\chi_{245}(62,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{19} a^{13} - \frac{8}{19} a^{12} - \frac{4}{19} a^{11} - \frac{5}{19} a^{10} - \frac{6}{19} a^{8} - \frac{3}{19} a^{7} - \frac{5}{19} a^{6} - \frac{9}{19} a^{5} - \frac{8}{19} a^{4} + \frac{6}{19} a^{3} - \frac{7}{19} a^{2} + \frac{8}{19} a$, $\frac{1}{19} a^{14} + \frac{8}{19} a^{12} + \frac{1}{19} a^{11} - \frac{2}{19} a^{10} - \frac{6}{19} a^{9} + \frac{6}{19} a^{8} + \frac{9}{19} a^{7} + \frac{8}{19} a^{6} - \frac{4}{19} a^{5} - \frac{1}{19} a^{4} + \frac{3}{19} a^{3} + \frac{9}{19} a^{2} + \frac{7}{19} a$, $\frac{1}{19} a^{15} + \frac{8}{19} a^{12} - \frac{8}{19} a^{11} - \frac{4}{19} a^{10} + \frac{6}{19} a^{9} - \frac{6}{19} a^{7} - \frac{2}{19} a^{6} - \frac{5}{19} a^{5} - \frac{9}{19} a^{4} - \frac{1}{19} a^{3} + \frac{6}{19} a^{2} - \frac{7}{19} a$, $\frac{1}{19} a^{16} - \frac{1}{19} a^{12} + \frac{9}{19} a^{11} + \frac{8}{19} a^{10} + \frac{4}{19} a^{8} + \frac{3}{19} a^{7} - \frac{3}{19} a^{6} + \frac{6}{19} a^{5} + \frac{6}{19} a^{4} - \frac{4}{19} a^{3} - \frac{8}{19} a^{2} - \frac{7}{19} a$, $\frac{1}{19} a^{17} + \frac{1}{19} a^{12} + \frac{4}{19} a^{11} - \frac{5}{19} a^{10} + \frac{4}{19} a^{9} - \frac{3}{19} a^{8} - \frac{6}{19} a^{7} + \frac{1}{19} a^{6} - \frac{3}{19} a^{5} + \frac{7}{19} a^{4} - \frac{2}{19} a^{3} + \frac{5}{19} a^{2} + \frac{8}{19} a$, $\frac{1}{19} a^{18} - \frac{7}{19} a^{12} - \frac{1}{19} a^{11} + \frac{9}{19} a^{10} - \frac{3}{19} a^{9} + \frac{4}{19} a^{7} + \frac{2}{19} a^{6} - \frac{3}{19} a^{5} + \frac{6}{19} a^{4} - \frac{1}{19} a^{3} - \frac{4}{19} a^{2} - \frac{8}{19} a$, $\frac{1}{19} a^{19} - \frac{1}{19} a$, $\frac{1}{19} a^{20} - \frac{1}{19} a^{2}$, $\frac{1}{19} a^{21} - \frac{1}{19} a^{3}$, $\frac{1}{19} a^{22} - \frac{1}{19} a^{4}$, $\frac{1}{361} a^{23} - \frac{3}{361} a^{22} - \frac{9}{361} a^{21} - \frac{2}{361} a^{20} - \frac{6}{361} a^{19} + \frac{3}{361} a^{18} + \frac{2}{361} a^{17} + \frac{3}{361} a^{16} + \frac{6}{361} a^{15} - \frac{7}{361} a^{14} + \frac{8}{361} a^{12} - \frac{23}{361} a^{11} + \frac{12}{361} a^{10} - \frac{18}{361} a^{9} + \frac{78}{361} a^{8} - \frac{71}{361} a^{7} - \frac{50}{361} a^{6} - \frac{8}{19} a^{5} - \frac{89}{361} a^{4} + \frac{153}{361} a^{3} + \frac{44}{361} a^{2} + \frac{6}{19} a$, $\frac{1}{361} a^{24} + \frac{1}{361} a^{22} + \frac{9}{361} a^{21} + \frac{7}{361} a^{20} + \frac{4}{361} a^{19} - \frac{8}{361} a^{18} + \frac{9}{361} a^{17} - \frac{4}{361} a^{16} - \frac{8}{361} a^{15} - \frac{2}{361} a^{14} + \frac{8}{361} a^{13} + \frac{153}{361} a^{12} - \frac{2}{19} a^{11} + \frac{94}{361} a^{10} - \frac{147}{361} a^{9} - \frac{160}{361} a^{8} - \frac{111}{361} a^{7} - \frac{93}{361} a^{6} + \frac{139}{361} a^{5} + \frac{8}{19} a^{4} - \frac{86}{361} a^{3} + \frac{151}{361} a^{2} + \frac{8}{19} a$, $\frac{1}{361} a^{25} - \frac{7}{361} a^{22} - \frac{3}{361} a^{21} + \frac{6}{361} a^{20} - \frac{2}{361} a^{19} + \frac{6}{361} a^{18} - \frac{6}{361} a^{17} + \frac{8}{361} a^{16} - \frac{8}{361} a^{15} - \frac{4}{361} a^{14} + \frac{1}{361} a^{13} - \frac{84}{361} a^{12} + \frac{155}{361} a^{11} + \frac{69}{361} a^{10} - \frac{28}{361} a^{9} - \frac{37}{361} a^{8} - \frac{41}{361} a^{7} + \frac{18}{361} a^{6} + \frac{3}{19} a^{5} - \frac{73}{361} a^{4} + \frac{55}{361} a^{3} + \frac{127}{361} a^{2} - \frac{8}{19} a$, $\frac{1}{6859} a^{26} - \frac{4}{6859} a^{25} - \frac{9}{6859} a^{24} + \frac{7}{6859} a^{23} + \frac{12}{6859} a^{22} + \frac{96}{6859} a^{21} - \frac{79}{6859} a^{20} + \frac{27}{6859} a^{19} + \frac{103}{6859} a^{18} + \frac{112}{6859} a^{17} - \frac{4}{361} a^{16} - \frac{139}{6859} a^{15} + \frac{89}{6859} a^{14} - \frac{141}{6859} a^{13} - \frac{3263}{6859} a^{12} + \frac{533}{6859} a^{11} + \frac{2476}{6859} a^{10} - \frac{3034}{6859} a^{9} + \frac{777}{6859} a^{8} + \frac{567}{6859} a^{7} - \frac{1930}{6859} a^{6} - \frac{2540}{6859} a^{5} + \frac{1381}{6859} a^{4} + \frac{353}{6859} a^{3} - \frac{2448}{6859} a^{2} - \frac{51}{361} a + \frac{9}{19}$, $\frac{1}{3509179895240640535178979475066999358564118859129726175206081} a^{27} - \frac{185337548946174656167982041656717579751892859224038197350}{3509179895240640535178979475066999358564118859129726175206081} a^{26} + \frac{2754872406275483565970006950218990838711173062067554319435}{3509179895240640535178979475066999358564118859129726175206081} a^{25} + \frac{1144206943918431053247498637557069617004006067573549975329}{3509179895240640535178979475066999358564118859129726175206081} a^{24} - \frac{4039329178466550430385706238639036793659195316237751442744}{3509179895240640535178979475066999358564118859129726175206081} a^{23} + \frac{61320491447138222227245831352492687158700188904444403430947}{3509179895240640535178979475066999358564118859129726175206081} a^{22} - \frac{644890822943176639480940658885149127016605919227961130311}{184693678696875817640998919740368387292848361006827693431899} a^{21} + \frac{8012778463826534786055413988727912469402559240543837077260}{3509179895240640535178979475066999358564118859129726175206081} a^{20} + \frac{61781555290201329043241381595649076574089751343114854000534}{3509179895240640535178979475066999358564118859129726175206081} a^{19} + \frac{45060665467278430319400149113782416321333594684028676888352}{3509179895240640535178979475066999358564118859129726175206081} a^{18} + \frac{46891572206491086901484280484496485055778867084823674409508}{3509179895240640535178979475066999358564118859129726175206081} a^{17} + \frac{9861431978873295381412997947475403104518232995609731443410}{3509179895240640535178979475066999358564118859129726175206081} a^{16} - \frac{83808937257838646776043476053569209357455528643895782799455}{3509179895240640535178979475066999358564118859129726175206081} a^{15} + \frac{62814655883233614073930264055556212870092051320807648804441}{3509179895240640535178979475066999358564118859129726175206081} a^{14} - \frac{1963279553203212856732643113439106125401762896266425012768}{184693678696875817640998919740368387292848361006827693431899} a^{13} + \frac{339292903233185240124412807279147041246987941257680411893098}{3509179895240640535178979475066999358564118859129726175206081} a^{12} - \frac{371229731399397493858763180564015517124813077983627460004288}{3509179895240640535178979475066999358564118859129726175206081} a^{11} + \frac{1049643228003622212396873544745943873023201362672826156716423}{3509179895240640535178979475066999358564118859129726175206081} a^{10} + \frac{746659305118330349224054197743455783965258447546143500985771}{3509179895240640535178979475066999358564118859129726175206081} a^{9} - \frac{1226712120985426389896042964231803573373515231582471378806996}{3509179895240640535178979475066999358564118859129726175206081} a^{8} + \frac{469595082163269006212913818968407083438480320369038356632628}{3509179895240640535178979475066999358564118859129726175206081} a^{7} + \frac{533838113154550048464541246312293039688110581065678908488881}{3509179895240640535178979475066999358564118859129726175206081} a^{6} - \frac{532521938836073146505537319687409568180681045867537203175659}{3509179895240640535178979475066999358564118859129726175206081} a^{5} + \frac{1098888875941227404673354867957538492535760036488580301387219}{3509179895240640535178979475066999358564118859129726175206081} a^{4} + \frac{5426138851234963770237122988416673200700889610722269394452}{3509179895240640535178979475066999358564118859129726175206081} a^{3} - \frac{534033514200018458653245840993081509126088431518409134158505}{3509179895240640535178979475066999358564118859129726175206081} a^{2} - \frac{41579852964134738323564841843537030770392704413432761184428}{184693678696875817640998919740368387292848361006827693431899} a - \frac{3320458677852389902066708939593638047697004777853240352364}{9720719931414516717947311565282546699623597947727773338521}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $27$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 98168811512269490000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 28 |
| The 28 conjugacy class representatives for $C_{28}$ |
| Character table for $C_{28}$ is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.4.6125.1, 7.7.13841287201.1, 14.14.14967283701606751125078125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $28$ | $28$ | R | R | ${\href{/LocalNumberField/11.7.0.1}{7} }^{4}$ | $28$ | $28$ | ${\href{/LocalNumberField/19.1.0.1}{1} }^{28}$ | $28$ | ${\href{/LocalNumberField/29.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{14}$ | $28$ | ${\href{/LocalNumberField/41.14.0.1}{14} }^{2}$ | $28$ | $28$ | $28$ | ${\href{/LocalNumberField/59.7.0.1}{7} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| 7 | Data not computed | ||||||