Properties

Label 28.28.8370927447...8125.1
Degree $28$
Signature $[28, 0]$
Discriminant $3^{14}\cdot 5^{21}\cdot 7^{48}$
Root discriminant $162.75$
Ramified primes $3, 5, 7$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group $C_{28}$ (as 28T1)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-63209, -1013901, 8311506, 68490877, 34038536, -463370698, -668407222, 834820998, 1935821398, -289531417, -2289033110, -484759443, 1342231212, 487358557, -451889985, -195423844, 95742934, 43240799, -13490477, -5765676, 1298689, 472657, -85141, -23205, 3640, 623, -91, -7, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^28 - 7*x^27 - 91*x^26 + 623*x^25 + 3640*x^24 - 23205*x^23 - 85141*x^22 + 472657*x^21 + 1298689*x^20 - 5765676*x^19 - 13490477*x^18 + 43240799*x^17 + 95742934*x^16 - 195423844*x^15 - 451889985*x^14 + 487358557*x^13 + 1342231212*x^12 - 484759443*x^11 - 2289033110*x^10 - 289531417*x^9 + 1935821398*x^8 + 834820998*x^7 - 668407222*x^6 - 463370698*x^5 + 34038536*x^4 + 68490877*x^3 + 8311506*x^2 - 1013901*x - 63209)
 
gp: K = bnfinit(x^28 - 7*x^27 - 91*x^26 + 623*x^25 + 3640*x^24 - 23205*x^23 - 85141*x^22 + 472657*x^21 + 1298689*x^20 - 5765676*x^19 - 13490477*x^18 + 43240799*x^17 + 95742934*x^16 - 195423844*x^15 - 451889985*x^14 + 487358557*x^13 + 1342231212*x^12 - 484759443*x^11 - 2289033110*x^10 - 289531417*x^9 + 1935821398*x^8 + 834820998*x^7 - 668407222*x^6 - 463370698*x^5 + 34038536*x^4 + 68490877*x^3 + 8311506*x^2 - 1013901*x - 63209, 1)
 

Normalized defining polynomial

\( x^{28} - 7 x^{27} - 91 x^{26} + 623 x^{25} + 3640 x^{24} - 23205 x^{23} - 85141 x^{22} + 472657 x^{21} + 1298689 x^{20} - 5765676 x^{19} - 13490477 x^{18} + 43240799 x^{17} + 95742934 x^{16} - 195423844 x^{15} - 451889985 x^{14} + 487358557 x^{13} + 1342231212 x^{12} - 484759443 x^{11} - 2289033110 x^{10} - 289531417 x^{9} + 1935821398 x^{8} + 834820998 x^{7} - 668407222 x^{6} - 463370698 x^{5} + 34038536 x^{4} + 68490877 x^{3} + 8311506 x^{2} - 1013901 x - 63209 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $28$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[28, 0]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(83709274472667248662717543234670163936409630856037139892578125=3^{14}\cdot 5^{21}\cdot 7^{48}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $162.75$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $3, 5, 7$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(735=3\cdot 5\cdot 7^{2}\)
Dirichlet character group:    $\lbrace$$\chi_{735}(512,·)$, $\chi_{735}(1,·)$, $\chi_{735}(323,·)$, $\chi_{735}(197,·)$, $\chi_{735}(64,·)$, $\chi_{735}(8,·)$, $\chi_{735}(631,·)$, $\chi_{735}(589,·)$, $\chi_{735}(526,·)$, $\chi_{735}(274,·)$, $\chi_{735}(211,·)$, $\chi_{735}(533,·)$, $\chi_{735}(407,·)$, $\chi_{735}(218,·)$, $\chi_{735}(92,·)$, $\chi_{735}(484,·)$, $\chi_{735}(421,·)$, $\chi_{735}(169,·)$, $\chi_{735}(106,·)$, $\chi_{735}(428,·)$, $\chi_{735}(722,·)$, $\chi_{735}(302,·)$, $\chi_{735}(113,·)$, $\chi_{735}(694,·)$, $\chi_{735}(617,·)$, $\chi_{735}(379,·)$, $\chi_{735}(316,·)$, $\chi_{735}(638,·)$$\rbrace$
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $\frac{1}{31} a^{20} + \frac{10}{31} a^{19} + \frac{7}{31} a^{18} + \frac{6}{31} a^{17} - \frac{11}{31} a^{16} - \frac{3}{31} a^{15} + \frac{5}{31} a^{14} + \frac{12}{31} a^{13} - \frac{3}{31} a^{12} - \frac{4}{31} a^{11} - \frac{1}{31} a^{10} + \frac{15}{31} a^{9} - \frac{6}{31} a^{8} + \frac{9}{31} a^{7} - \frac{11}{31} a^{6} + \frac{6}{31} a^{4} - \frac{4}{31} a^{3} - \frac{1}{31} a^{2} + \frac{7}{31} a$, $\frac{1}{31} a^{21} - \frac{2}{31} a^{18} - \frac{9}{31} a^{17} + \frac{14}{31} a^{16} + \frac{4}{31} a^{15} - \frac{7}{31} a^{14} + \frac{1}{31} a^{13} - \frac{5}{31} a^{12} + \frac{8}{31} a^{11} - \frac{6}{31} a^{10} - \frac{1}{31} a^{9} + \frac{7}{31} a^{8} - \frac{8}{31} a^{7} - \frac{14}{31} a^{6} + \frac{6}{31} a^{5} - \frac{2}{31} a^{4} + \frac{8}{31} a^{3} - \frac{14}{31} a^{2} - \frac{8}{31} a$, $\frac{1}{31} a^{22} - \frac{2}{31} a^{19} - \frac{9}{31} a^{18} + \frac{14}{31} a^{17} + \frac{4}{31} a^{16} - \frac{7}{31} a^{15} + \frac{1}{31} a^{14} - \frac{5}{31} a^{13} + \frac{8}{31} a^{12} - \frac{6}{31} a^{11} - \frac{1}{31} a^{10} + \frac{7}{31} a^{9} - \frac{8}{31} a^{8} - \frac{14}{31} a^{7} + \frac{6}{31} a^{6} - \frac{2}{31} a^{5} + \frac{8}{31} a^{4} - \frac{14}{31} a^{3} - \frac{8}{31} a^{2}$, $\frac{1}{31} a^{23} + \frac{11}{31} a^{19} - \frac{3}{31} a^{18} - \frac{15}{31} a^{17} + \frac{2}{31} a^{16} - \frac{5}{31} a^{15} + \frac{5}{31} a^{14} + \frac{1}{31} a^{13} - \frac{12}{31} a^{12} - \frac{9}{31} a^{11} + \frac{5}{31} a^{10} - \frac{9}{31} a^{9} + \frac{5}{31} a^{8} - \frac{7}{31} a^{7} + \frac{7}{31} a^{6} + \frac{8}{31} a^{5} - \frac{2}{31} a^{4} + \frac{15}{31} a^{3} - \frac{2}{31} a^{2} + \frac{14}{31} a$, $\frac{1}{589} a^{24} + \frac{9}{589} a^{22} - \frac{8}{589} a^{21} + \frac{2}{589} a^{20} + \frac{106}{589} a^{19} + \frac{12}{589} a^{18} - \frac{226}{589} a^{17} + \frac{235}{589} a^{16} - \frac{32}{589} a^{15} + \frac{269}{589} a^{14} + \frac{261}{589} a^{13} + \frac{6}{589} a^{12} + \frac{47}{589} a^{11} + \frac{8}{589} a^{10} - \frac{8}{31} a^{9} - \frac{1}{31} a^{8} - \frac{136}{589} a^{7} - \frac{192}{589} a^{6} + \frac{149}{589} a^{5} - \frac{44}{589} a^{4} + \frac{13}{31} a^{3} + \frac{63}{589} a^{2} + \frac{125}{589} a + \frac{3}{19}$, $\frac{1}{589} a^{25} + \frac{9}{589} a^{23} - \frac{8}{589} a^{22} + \frac{2}{589} a^{21} - \frac{8}{589} a^{20} + \frac{50}{589} a^{19} + \frac{154}{589} a^{18} + \frac{140}{589} a^{17} + \frac{44}{589} a^{16} + \frac{22}{589} a^{15} + \frac{280}{589} a^{14} - \frac{184}{589} a^{13} - \frac{200}{589} a^{12} - \frac{125}{589} a^{11} - \frac{2}{31} a^{10} + \frac{2}{31} a^{9} - \frac{41}{589} a^{8} - \frac{40}{589} a^{7} + \frac{225}{589} a^{6} - \frac{44}{589} a^{5} + \frac{8}{31} a^{4} - \frac{70}{589} a^{3} + \frac{239}{589} a^{2} - \frac{116}{589} a$, $\frac{1}{18259} a^{26} + \frac{12}{18259} a^{25} + \frac{8}{18259} a^{24} + \frac{157}{18259} a^{23} + \frac{11}{18259} a^{22} - \frac{128}{18259} a^{21} + \frac{9}{18259} a^{20} - \frac{4862}{18259} a^{19} + \frac{140}{961} a^{18} - \frac{311}{18259} a^{17} - \frac{7760}{18259} a^{16} - \frac{1875}{18259} a^{15} + \frac{462}{961} a^{14} - \frac{5006}{18259} a^{13} - \frac{7604}{18259} a^{12} - \frac{3637}{18259} a^{11} - \frac{7646}{18259} a^{10} + \frac{1270}{18259} a^{9} + \frac{300}{961} a^{8} - \frac{8042}{18259} a^{7} + \frac{3665}{18259} a^{6} - \frac{115}{589} a^{5} - \frac{2648}{18259} a^{4} + \frac{8747}{18259} a^{3} - \frac{2745}{18259} a^{2} - \frac{1460}{18259} a + \frac{206}{589}$, $\frac{1}{2337249317098578898246711927390610640680669129259765962230022157802545653492011637346783717412609} a^{27} - \frac{22829388851181287085052852818360664701226964584160906965572010093742921100470596234017014101}{2337249317098578898246711927390610640680669129259765962230022157802545653492011637346783717412609} a^{26} - \frac{1459486140931653365589426248964039046515058925958955730163545540567739579131345557335199438308}{2337249317098578898246711927390610640680669129259765962230022157802545653492011637346783717412609} a^{25} - \frac{729970588400292698017606859597324621409867815344914503748366666263329274705441223180275510611}{2337249317098578898246711927390610640680669129259765962230022157802545653492011637346783717412609} a^{24} - \frac{23734583189266836267347151676614146079534393042505204834322412808049284862567915673418029035924}{2337249317098578898246711927390610640680669129259765962230022157802545653492011637346783717412609} a^{23} - \frac{28607736019956101696515412988005509057046561502897582826848171937404419651609519091398884063}{3968165224276025294137032134788812632734582562410468526706319452975459513568780369009819554181} a^{22} - \frac{7390468212179035497947463823091787120166648037503527040410027097060899816381893790737945344063}{2337249317098578898246711927390610640680669129259765962230022157802545653492011637346783717412609} a^{21} - \frac{10516898721894892070945775297192088765228756682860758639249744738622731239504977141006400355825}{2337249317098578898246711927390610640680669129259765962230022157802545653492011637346783717412609} a^{20} + \frac{1144941559613182116637864485754486761376998426488327703107291118522685635332087675245528028402062}{2337249317098578898246711927390610640680669129259765962230022157802545653492011637346783717412609} a^{19} + \frac{958341819351609026920768541042087905829578687386635290596177557856825539294061208287461296391212}{2337249317098578898246711927390610640680669129259765962230022157802545653492011637346783717412609} a^{18} + \frac{995114612492999631358498695430631731241174409130560035750133366535019055711741432011862590401546}{2337249317098578898246711927390610640680669129259765962230022157802545653492011637346783717412609} a^{17} - \frac{512340061416296564061230479196638448923061489052584601655300323410187703257398361050567142034763}{2337249317098578898246711927390610640680669129259765962230022157802545653492011637346783717412609} a^{16} + \frac{824180573772640151535581235844487042604927937449381647183958437403691344290945480965131336455919}{2337249317098578898246711927390610640680669129259765962230022157802545653492011637346783717412609} a^{15} - \frac{697149075204368878988015076961519311359516685680000684095366588062094993868820219008950394650271}{2337249317098578898246711927390610640680669129259765962230022157802545653492011637346783717412609} a^{14} - \frac{635430233369960249678538181923721823271055571101018247232598020557584059281015563111182314784989}{2337249317098578898246711927390610640680669129259765962230022157802545653492011637346783717412609} a^{13} + \frac{44177913433781936730588327768233896125616557111305545121246321760261930453022091458905931607926}{123013121952556784118247996178453191614772059434724524327895903042239244920632191439304406179611} a^{12} - \frac{218334435995390154313890743587539909693765026582702521016113133851395663316952062180990460244678}{2337249317098578898246711927390610640680669129259765962230022157802545653492011637346783717412609} a^{11} + \frac{677772635378740406876030273564436396415042956170625558123525079977802091465995604094486865498094}{2337249317098578898246711927390610640680669129259765962230022157802545653492011637346783717412609} a^{10} + \frac{605755346991538264908456745326835067889927639947864308853043175722846994828957142479258528206982}{2337249317098578898246711927390610640680669129259765962230022157802545653492011637346783717412609} a^{9} + \frac{977749474048275841141236269919637479707327343869527328056943823692282646154730960356380576712949}{2337249317098578898246711927390610640680669129259765962230022157802545653492011637346783717412609} a^{8} - \frac{124066347739332071975157141638054828019782246017674120684641658803803688367398324542497187301544}{2337249317098578898246711927390610640680669129259765962230022157802545653492011637346783717412609} a^{7} + \frac{687371471084830585217318338310456083409703050173860578313709745299758556152007522456053136869687}{2337249317098578898246711927390610640680669129259765962230022157802545653492011637346783717412609} a^{6} - \frac{1165355048861332495253328485118179415551781678050745941432116374833389707085183209169184546095508}{2337249317098578898246711927390610640680669129259765962230022157802545653492011637346783717412609} a^{5} - \frac{283266466641182837620694150948458204803015007045249839300716717519833616242556062675741608859950}{2337249317098578898246711927390610640680669129259765962230022157802545653492011637346783717412609} a^{4} + \frac{1058351947294992458532043643977118291064805425978008628080061750949072834289157714234994891262868}{2337249317098578898246711927390610640680669129259765962230022157802545653492011637346783717412609} a^{3} - \frac{930901179932590634776049498576910959522103257305701560523870481572727482556787328402907405847466}{2337249317098578898246711927390610640680669129259765962230022157802545653492011637346783717412609} a^{2} - \frac{335264490189429477328691676454685602457488499190507617178101645195606175307688111587469528574537}{2337249317098578898246711927390610640680669129259765962230022157802545653492011637346783717412609} a - \frac{10855843502258976917595256972335126681619795794476602028350591794264906905646890165077858116165}{75395139261244480588603610560987440021957068685798902007420069606533730757806827011186571529439}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $27$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 16515401085022949000000 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_{28}$ (as 28T1):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A cyclic group of order 28
The 28 conjugacy class representatives for $C_{28}$
Character table for $C_{28}$ is not computed

Intermediate fields

\(\Q(\sqrt{5}) \), \(\Q(\zeta_{15})^+\), 7.7.13841287201.1, 14.14.14967283701606751125078125.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type $28$ R R R ${\href{/LocalNumberField/11.14.0.1}{14} }^{2}$ $28$ $28$ ${\href{/LocalNumberField/19.2.0.1}{2} }^{14}$ $28$ ${\href{/LocalNumberField/29.7.0.1}{7} }^{4}$ ${\href{/LocalNumberField/31.1.0.1}{1} }^{28}$ $28$ ${\href{/LocalNumberField/41.14.0.1}{14} }^{2}$ $28$ $28$ $28$ ${\href{/LocalNumberField/59.7.0.1}{7} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
3Data not computed
5Data not computed
7Data not computed