Normalized defining polynomial
\( x^{28} - 29 x^{26} + 377 x^{24} - 2900 x^{22} + 14674 x^{20} - 51359 x^{18} + 127281 x^{16} - 224808 x^{14} + 281010 x^{12} - 243542 x^{10} + 140998 x^{8} - 51272 x^{6} + 10556 x^{4} - 1015 x^{2} + 29 \)
Invariants
Degree: | $28$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
| |
Signature: | $[28, 0]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
| |
Discriminant: | \(819569564076950716311987772907236898045117333504\)\(\medspace = 2^{28}\cdot 29^{27}\) | sage: K.disc()
gp: K.disc
magma: Discriminant(Integers(K));
| |
Root discriminant: | $51.43$ | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
| |
Ramified primes: | $2, 29$ | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(Integers(K)));
| |
$|\Gal(K/\Q)|$: | $28$ | ||
This field is Galois and abelian over $\Q$. | |||
Conductor: | \(116=2^{2}\cdot 29\) | ||
Dirichlet character group: | $\lbrace$$\chi_{116}(1,·)$, $\chi_{116}(3,·)$, $\chi_{116}(5,·)$, $\chi_{116}(65,·)$, $\chi_{116}(9,·)$, $\chi_{116}(79,·)$, $\chi_{116}(11,·)$, $\chi_{116}(109,·)$, $\chi_{116}(13,·)$, $\chi_{116}(15,·)$, $\chi_{116}(81,·)$, $\chi_{116}(75,·)$, $\chi_{116}(19,·)$, $\chi_{116}(25,·)$, $\chi_{116}(27,·)$, $\chi_{116}(93,·)$, $\chi_{116}(31,·)$, $\chi_{116}(33,·)$, $\chi_{116}(99,·)$, $\chi_{116}(39,·)$, $\chi_{116}(43,·)$, $\chi_{116}(45,·)$, $\chi_{116}(47,·)$, $\chi_{116}(49,·)$, $\chi_{116}(53,·)$, $\chi_{116}(55,·)$, $\chi_{116}(57,·)$, $\chi_{116}(95,·)$$\rbrace$ | ||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $a^{27}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
Rank: | $27$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
| |
Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K!f(g): g in Generators(UK)];
| |
Regulator: | \( 822416597953191.9 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
|
Class number formula
Galois group
A cyclic group of order 28 |
The 28 conjugacy class representatives for $C_{28}$ |
Character table for $C_{28}$ is not computed |
Intermediate fields
\(\Q(\sqrt{29}) \), 4.4.390224.1, 7.7.594823321.1, \(\Q(\zeta_{29})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | $28$ | ${\href{/LocalNumberField/5.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/7.14.0.1}{14} }^{2}$ | $28$ | ${\href{/LocalNumberField/13.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{7}$ | $28$ | ${\href{/LocalNumberField/23.14.0.1}{14} }^{2}$ | R | $28$ | $28$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{7}$ | $28$ | $28$ | ${\href{/LocalNumberField/53.7.0.1}{7} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{14}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
2 | Data not computed | ||||||
29 | Data not computed |