Normalized defining polynomial
\( x^{28} - x^{27} - 40 x^{26} + 35 x^{25} + 667 x^{24} - 497 x^{23} - 6073 x^{22} + 3733 x^{21} + 33381 x^{20} - 16356 x^{19} - 116335 x^{18} + 43955 x^{17} + 264151 x^{16} - 74631 x^{15} - 396001 x^{14} + 80966 x^{13} + 391804 x^{12} - 55684 x^{11} - 251669 x^{10} + 23519 x^{9} + 101079 x^{8} - 5634 x^{7} - 23674 x^{6} + 574 x^{5} + 2842 x^{4} + 28 x^{3} - 133 x^{2} - 7 x + 1 \)
Invariants
Degree: | $28$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
| |
Signature: | $[28, 0]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
| |
Discriminant: | \(642581186433047492874742549394260203375244140625\)\(\medspace = 5^{14}\cdot 29^{26}\) | sage: K.disc()
gp: K.disc
magma: Discriminant(Integers(K));
| |
Root discriminant: | $50.98$ | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
| |
Ramified primes: | $5, 29$ | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(Integers(K)));
| |
$|\Gal(K/\Q)|$: | $28$ | ||
This field is Galois and abelian over $\Q$. | |||
Conductor: | \(145=5\cdot 29\) | ||
Dirichlet character group: | $\lbrace$$\chi_{145}(64,·)$, $\chi_{145}(1,·)$, $\chi_{145}(4,·)$, $\chi_{145}(6,·)$, $\chi_{145}(129,·)$, $\chi_{145}(136,·)$, $\chi_{145}(9,·)$, $\chi_{145}(74,·)$, $\chi_{145}(139,·)$, $\chi_{145}(141,·)$, $\chi_{145}(16,·)$, $\chi_{145}(81,·)$, $\chi_{145}(86,·)$, $\chi_{145}(24,·)$, $\chi_{145}(91,·)$, $\chi_{145}(94,·)$, $\chi_{145}(96,·)$, $\chi_{145}(144,·)$, $\chi_{145}(34,·)$, $\chi_{145}(36,·)$, $\chi_{145}(71,·)$, $\chi_{145}(109,·)$, $\chi_{145}(111,·)$, $\chi_{145}(49,·)$, $\chi_{145}(51,·)$, $\chi_{145}(54,·)$, $\chi_{145}(121,·)$, $\chi_{145}(59,·)$$\rbrace$ | ||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $\frac{1}{59} a^{25} - \frac{25}{59} a^{24} + \frac{28}{59} a^{22} + \frac{5}{59} a^{21} - \frac{13}{59} a^{20} - \frac{29}{59} a^{19} + \frac{25}{59} a^{18} + \frac{9}{59} a^{17} - \frac{22}{59} a^{16} - \frac{25}{59} a^{15} + \frac{19}{59} a^{14} - \frac{21}{59} a^{13} + \frac{26}{59} a^{12} + \frac{8}{59} a^{11} - \frac{11}{59} a^{10} - \frac{17}{59} a^{9} + \frac{16}{59} a^{8} - \frac{15}{59} a^{7} - \frac{13}{59} a^{6} + \frac{21}{59} a^{5} + \frac{27}{59} a^{4} - \frac{16}{59} a^{3} + \frac{25}{59} a^{2} - \frac{7}{59} a - \frac{27}{59}$, $\frac{1}{59} a^{26} + \frac{24}{59} a^{24} + \frac{28}{59} a^{23} - \frac{3}{59} a^{22} - \frac{6}{59} a^{21} + \frac{8}{59} a^{19} - \frac{15}{59} a^{18} + \frac{26}{59} a^{17} + \frac{15}{59} a^{16} - \frac{16}{59} a^{15} - \frac{18}{59} a^{14} - \frac{27}{59} a^{13} + \frac{9}{59} a^{12} + \frac{12}{59} a^{11} + \frac{3}{59} a^{10} + \frac{4}{59} a^{9} - \frac{28}{59} a^{8} + \frac{25}{59} a^{7} - \frac{9}{59} a^{6} + \frac{21}{59} a^{5} + \frac{10}{59} a^{4} - \frac{21}{59} a^{3} + \frac{28}{59} a^{2} - \frac{25}{59} a - \frac{26}{59}$, $\frac{1}{1174451931043404464510641028789} a^{27} + \frac{4664799318915561977227153332}{1174451931043404464510641028789} a^{26} - \frac{110809578378861470963539376}{69085407708435556735920060517} a^{25} - \frac{164622800266790736038061199004}{1174451931043404464510641028789} a^{24} + \frac{181964440414601394490988721586}{1174451931043404464510641028789} a^{23} - \frac{12744189033319699827018283214}{69085407708435556735920060517} a^{22} - \frac{198130269341417057305802908344}{1174451931043404464510641028789} a^{21} + \frac{219739351239271133761406432576}{1174451931043404464510641028789} a^{20} + \frac{40384319278439428721390253374}{1174451931043404464510641028789} a^{19} + \frac{147324928552331529180147580278}{1174451931043404464510641028789} a^{18} - \frac{42029580497118862738136615318}{1174451931043404464510641028789} a^{17} - \frac{389751348565644730293997862490}{1174451931043404464510641028789} a^{16} + \frac{434768975132253161969213522229}{1174451931043404464510641028789} a^{15} + \frac{248394608026106213821969851080}{1174451931043404464510641028789} a^{14} + \frac{570527313822837965254608767218}{1174451931043404464510641028789} a^{13} + \frac{108694819029305994132019389541}{1174451931043404464510641028789} a^{12} + \frac{435324265311585056536518735532}{1174451931043404464510641028789} a^{11} - \frac{457221319928289594963530495368}{1174451931043404464510641028789} a^{10} - \frac{384178468361149903985654966053}{1174451931043404464510641028789} a^{9} + \frac{22609238791726581558521141620}{1174451931043404464510641028789} a^{8} + \frac{361244437823249756613427190069}{1174451931043404464510641028789} a^{7} - \frac{553987219776826163652268219043}{1174451931043404464510641028789} a^{6} - \frac{32995348050508953620351723898}{69085407708435556735920060517} a^{5} + \frac{238800709684541288010580622570}{1174451931043404464510641028789} a^{4} - \frac{18379768169071649419415410836}{1174451931043404464510641028789} a^{3} - \frac{447048766234291197554777418226}{1174451931043404464510641028789} a^{2} - \frac{82008374321897316340359420963}{1174451931043404464510641028789} a + \frac{446285954461926414459632231309}{1174451931043404464510641028789}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
Rank: | $27$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
| |
Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K!f(g): g in Generators(UK)];
| |
Regulator: | \( 512915496404520.1 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
|
Class number formula
Galois group
$C_2\times C_{14}$ (as 28T2):
An abelian group of order 28 |
The 28 conjugacy class representatives for $C_2\times C_{14}$ |
Character table for $C_2\times C_{14}$ is not computed |
Intermediate fields
\(\Q(\sqrt{5}) \), \(\Q(\sqrt{29}) \), \(\Q(\sqrt{145}) \), \(\Q(\sqrt{5}, \sqrt{29})\), 7.7.594823321.1, 14.14.27641779937927268828125.1, \(\Q(\zeta_{29})^+\), 14.14.801611618199890796015625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | ${\href{/LocalNumberField/2.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/3.14.0.1}{14} }^{2}$ | R | ${\href{/LocalNumberField/7.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/11.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/13.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{14}$ | ${\href{/LocalNumberField/19.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/23.14.0.1}{14} }^{2}$ | R | ${\href{/LocalNumberField/31.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/37.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{14}$ | ${\href{/LocalNumberField/43.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/47.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/53.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/59.1.0.1}{1} }^{28}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
$5$ | 5.14.7.1 | $x^{14} - 250 x^{8} + 15625 x^{2} - 312500$ | $2$ | $7$ | $7$ | $C_{14}$ | $[\ ]_{2}^{7}$ |
5.14.7.1 | $x^{14} - 250 x^{8} + 15625 x^{2} - 312500$ | $2$ | $7$ | $7$ | $C_{14}$ | $[\ ]_{2}^{7}$ | |
$29$ | 29.14.13.1 | $x^{14} - 29$ | $14$ | $1$ | $13$ | $C_{14}$ | $[\ ]_{14}$ |
29.14.13.1 | $x^{14} - 29$ | $14$ | $1$ | $13$ | $C_{14}$ | $[\ ]_{14}$ |