Normalized defining polynomial
\( x^{28} - 174 x^{26} + 13572 x^{24} - 626400 x^{22} + 19017504 x^{20} - 399367584 x^{18} + 5938422336 x^{16} - 62931852288 x^{14} + 471988892160 x^{12} - 2454342239232 x^{10} + 8525609883648 x^{8} - 18601330655232 x^{6} + 22978114338816 x^{4} - 13256604426240 x^{2} + 2272560758784 \)
Invariants
| Degree: | $28$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[28, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(64224883807413352704377353768048295264353596334281414672384=2^{42}\cdot 3^{14}\cdot 29^{27}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $125.97$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(696=2^{3}\cdot 3\cdot 29\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{696}(1,·)$, $\chi_{696}(361,·)$, $\chi_{696}(389,·)$, $\chi_{696}(673,·)$, $\chi_{696}(265,·)$, $\chi_{696}(241,·)$, $\chi_{696}(269,·)$, $\chi_{696}(77,·)$, $\chi_{696}(461,·)$, $\chi_{696}(529,·)$, $\chi_{696}(533,·)$, $\chi_{696}(121,·)$, $\chi_{696}(25,·)$, $\chi_{696}(101,·)$, $\chi_{696}(221,·)$, $\chi_{696}(485,·)$, $\chi_{696}(653,·)$, $\chi_{696}(289,·)$, $\chi_{696}(677,·)$, $\chi_{696}(49,·)$, $\chi_{696}(169,·)$, $\chi_{696}(365,·)$, $\chi_{696}(625,·)$, $\chi_{696}(437,·)$, $\chi_{696}(457,·)$, $\chi_{696}(313,·)$, $\chi_{696}(293,·)$, $\chi_{696}(317,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{6} a^{2}$, $\frac{1}{6} a^{3}$, $\frac{1}{36} a^{4}$, $\frac{1}{36} a^{5}$, $\frac{1}{216} a^{6}$, $\frac{1}{216} a^{7}$, $\frac{1}{1296} a^{8}$, $\frac{1}{1296} a^{9}$, $\frac{1}{7776} a^{10}$, $\frac{1}{7776} a^{11}$, $\frac{1}{46656} a^{12}$, $\frac{1}{46656} a^{13}$, $\frac{1}{279936} a^{14}$, $\frac{1}{279936} a^{15}$, $\frac{1}{1679616} a^{16}$, $\frac{1}{1679616} a^{17}$, $\frac{1}{10077696} a^{18}$, $\frac{1}{10077696} a^{19}$, $\frac{1}{60466176} a^{20}$, $\frac{1}{60466176} a^{21}$, $\frac{1}{362797056} a^{22}$, $\frac{1}{362797056} a^{23}$, $\frac{1}{2176782336} a^{24}$, $\frac{1}{2176782336} a^{25}$, $\frac{1}{13060694016} a^{26}$, $\frac{1}{13060694016} a^{27}$
Class group and class number
Not computed
Unit group
| Rank: | $27$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 28 |
| The 28 conjugacy class representatives for $C_{28}$ |
| Character table for $C_{28}$ is not computed |
Intermediate fields
| \(\Q(\sqrt{29}) \), 4.4.14048064.1, 7.7.594823321.1, \(\Q(\zeta_{29})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/7.7.0.1}{7} }^{4}$ | $28$ | ${\href{/LocalNumberField/13.7.0.1}{7} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{7}$ | $28$ | ${\href{/LocalNumberField/23.14.0.1}{14} }^{2}$ | R | $28$ | $28$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{7}$ | $28$ | $28$ | ${\href{/LocalNumberField/53.7.0.1}{7} }^{4}$ | ${\href{/LocalNumberField/59.1.0.1}{1} }^{28}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| 29 | Data not computed | ||||||