Properties

Label 28.28.642...384.1
Degree $28$
Signature $[28, 0]$
Discriminant $6.422\times 10^{58}$
Root discriminant \(125.97\)
Ramified primes $2,3,29$
Class number not computed
Class group not computed
Galois group $C_{28}$ (as 28T1)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / Pari/GP / SageMath

Normalized defining polynomial

Copy content comment:Define the number field
 
Copy content sage:x = polygen(QQ); K.<a> = NumberField(x^28 - 174*x^26 + 13572*x^24 - 626400*x^22 + 19017504*x^20 - 399367584*x^18 + 5938422336*x^16 - 62931852288*x^14 + 471988892160*x^12 - 2454342239232*x^10 + 8525609883648*x^8 - 18601330655232*x^6 + 22978114338816*x^4 - 13256604426240*x^2 + 2272560758784)
 
Copy content gp:K = bnfinit(y^28 - 174*y^26 + 13572*y^24 - 626400*y^22 + 19017504*y^20 - 399367584*y^18 + 5938422336*y^16 - 62931852288*y^14 + 471988892160*y^12 - 2454342239232*y^10 + 8525609883648*y^8 - 18601330655232*y^6 + 22978114338816*y^4 - 13256604426240*y^2 + 2272560758784, 1)
 
Copy content magma:R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^28 - 174*x^26 + 13572*x^24 - 626400*x^22 + 19017504*x^20 - 399367584*x^18 + 5938422336*x^16 - 62931852288*x^14 + 471988892160*x^12 - 2454342239232*x^10 + 8525609883648*x^8 - 18601330655232*x^6 + 22978114338816*x^4 - 13256604426240*x^2 + 2272560758784);
 
Copy content oscar:Qx, x = polynomial_ring(QQ); K, a = number_field(x^28 - 174*x^26 + 13572*x^24 - 626400*x^22 + 19017504*x^20 - 399367584*x^18 + 5938422336*x^16 - 62931852288*x^14 + 471988892160*x^12 - 2454342239232*x^10 + 8525609883648*x^8 - 18601330655232*x^6 + 22978114338816*x^4 - 13256604426240*x^2 + 2272560758784)
 

\( x^{28} - 174 x^{26} + 13572 x^{24} - 626400 x^{22} + 19017504 x^{20} - 399367584 x^{18} + \cdots + 2272560758784 \) Copy content Toggle raw display

Copy content comment:Defining polynomial
 
Copy content sage:K.defining_polynomial()
 
Copy content gp:K.pol
 
Copy content magma:DefiningPolynomial(K);
 
Copy content oscar:defining_polynomial(K)
 

Invariants

Degree:  $28$
Copy content comment:Degree over Q
 
Copy content sage:K.degree()
 
Copy content gp:poldegree(K.pol)
 
Copy content magma:Degree(K);
 
Copy content oscar:degree(K)
 
Signature:  $[28, 0]$
Copy content comment:Signature
 
Copy content sage:K.signature()
 
Copy content gp:K.sign
 
Copy content magma:Signature(K);
 
Copy content oscar:signature(K)
 
Discriminant:   \(64224883807413352704377353768048295264353596334281414672384\) \(\medspace = 2^{42}\cdot 3^{14}\cdot 29^{27}\) Copy content Toggle raw display
Copy content comment:Discriminant
 
Copy content sage:K.disc()
 
Copy content gp:K.disc
 
Copy content magma:OK := Integers(K); Discriminant(OK);
 
Copy content oscar:OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(125.97\)
Copy content comment:Root discriminant
 
Copy content sage:(K.disc().abs())^(1./K.degree())
 
Copy content gp:abs(K.disc)^(1/poldegree(K.pol))
 
Copy content magma:Abs(Discriminant(OK))^(1/Degree(K));
 
Copy content oscar:OK = ring_of_integers(K); (1.0 * abs(discriminant(OK)))^(1/degree(K))
 
Galois root discriminant:  $2^{3/2}3^{1/2}29^{27/28}\approx 125.9723174208094$
Ramified primes:   \(2\), \(3\), \(29\) Copy content Toggle raw display
Copy content comment:Ramified primes
 
Copy content sage:K.disc().support()
 
Copy content gp:factor(abs(K.disc))[,1]~
 
Copy content magma:PrimeDivisors(Discriminant(OK));
 
Copy content oscar:prime_divisors(discriminant(OK))
 
Discriminant root field:  \(\Q(\sqrt{29}) \)
$\Aut(K/\Q)$ $=$ $\Gal(K/\Q)$:   $C_{28}$
Copy content comment:Autmorphisms
 
Copy content sage:K.automorphisms()
 
Copy content magma:Automorphisms(K);
 
Copy content oscar:automorphisms(K)
 
This field is Galois and abelian over $\Q$.
Conductor:  \(696=2^{3}\cdot 3\cdot 29\)
Dirichlet character group:    $\lbrace$$\chi_{696}(1,·)$, $\chi_{696}(361,·)$, $\chi_{696}(389,·)$, $\chi_{696}(673,·)$, $\chi_{696}(265,·)$, $\chi_{696}(241,·)$, $\chi_{696}(269,·)$, $\chi_{696}(77,·)$, $\chi_{696}(461,·)$, $\chi_{696}(529,·)$, $\chi_{696}(533,·)$, $\chi_{696}(121,·)$, $\chi_{696}(25,·)$, $\chi_{696}(101,·)$, $\chi_{696}(221,·)$, $\chi_{696}(485,·)$, $\chi_{696}(653,·)$, $\chi_{696}(289,·)$, $\chi_{696}(677,·)$, $\chi_{696}(49,·)$, $\chi_{696}(169,·)$, $\chi_{696}(365,·)$, $\chi_{696}(625,·)$, $\chi_{696}(437,·)$, $\chi_{696}(457,·)$, $\chi_{696}(313,·)$, $\chi_{696}(293,·)$, $\chi_{696}(317,·)$$\rbrace$
This is not a CM field.
This field has no CM subfields.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $\frac{1}{6}a^{2}$, $\frac{1}{6}a^{3}$, $\frac{1}{36}a^{4}$, $\frac{1}{36}a^{5}$, $\frac{1}{216}a^{6}$, $\frac{1}{216}a^{7}$, $\frac{1}{1296}a^{8}$, $\frac{1}{1296}a^{9}$, $\frac{1}{7776}a^{10}$, $\frac{1}{7776}a^{11}$, $\frac{1}{46656}a^{12}$, $\frac{1}{46656}a^{13}$, $\frac{1}{279936}a^{14}$, $\frac{1}{279936}a^{15}$, $\frac{1}{1679616}a^{16}$, $\frac{1}{1679616}a^{17}$, $\frac{1}{10077696}a^{18}$, $\frac{1}{10077696}a^{19}$, $\frac{1}{60466176}a^{20}$, $\frac{1}{60466176}a^{21}$, $\frac{1}{362797056}a^{22}$, $\frac{1}{362797056}a^{23}$, $\frac{1}{2176782336}a^{24}$, $\frac{1}{2176782336}a^{25}$, $\frac{1}{13060694016}a^{26}$, $\frac{1}{13060694016}a^{27}$ Copy content Toggle raw display

Copy content comment:Integral basis
 
Copy content sage:K.integral_basis()
 
Copy content gp:K.zk
 
Copy content magma:IntegralBasis(K);
 
Copy content oscar:basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

Ideal class group:  not computed
Copy content comment:Class group
 
Copy content sage:K.class_group().invariants()
 
Copy content gp:K.clgp
 
Copy content magma:ClassGroup(K);
 
Copy content oscar:class_group(K)
 
Narrow class group:  not computed
Copy content comment:Narrow class group
 
Copy content sage:K.narrow_class_group().invariants()
 
Copy content gp:bnfnarrow(K)
 
Copy content magma:NarrowClassGroup(K);
 

Unit group

Copy content comment:Unit group
 
Copy content sage:UK = K.unit_group()
 
Copy content magma:UK, fUK := UnitGroup(K);
 
Copy content oscar:UK, fUK = unit_group(OK)
 
Rank:  $27$
Copy content comment:Unit rank
 
Copy content sage:UK.rank()
 
Copy content gp:K.fu
 
Copy content magma:UnitRank(K);
 
Copy content oscar:rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
Copy content comment:Generator for roots of unity
 
Copy content sage:UK.torsion_generator()
 
Copy content gp:K.tu[2]
 
Copy content magma:K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
Copy content oscar:torsion_units_generator(OK)
 
Fundamental units:  not computed
Copy content comment:Fundamental units
 
Copy content sage:UK.fundamental_units()
 
Copy content gp:K.fu
 
Copy content magma:[K|fUK(g): g in Generators(UK)];
 
Copy content oscar:[K(fUK(a)) for a in gens(UK)]
 
Regulator:  not computed
Copy content comment:Regulator
 
Copy content sage:K.regulator()
 
Copy content gp:K.reg
 
Copy content magma:Regulator(K);
 
Copy content oscar:regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr = \mathstrut &\frac{2^{28}\cdot(2\pi)^{0}\cdot R \cdot h}{2\cdot\sqrt{64224883807413352704377353768048295264353596334281414672384}}\cr\mathstrut & \text{ some values not computed } \end{aligned}\]

Copy content comment:Analytic class number formula
 
Copy content sage:# self-contained SageMath code snippet to compute the analytic class number formula x = polygen(QQ); K.<a> = NumberField(x^28 - 174*x^26 + 13572*x^24 - 626400*x^22 + 19017504*x^20 - 399367584*x^18 + 5938422336*x^16 - 62931852288*x^14 + 471988892160*x^12 - 2454342239232*x^10 + 8525609883648*x^8 - 18601330655232*x^6 + 22978114338816*x^4 - 13256604426240*x^2 + 2272560758784) DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent() hK = K.class_number(); wK = K.unit_group().torsion_generator().order(); 2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
Copy content gp:\\ self-contained Pari/GP code snippet to compute the analytic class number formula K = bnfinit(x^28 - 174*x^26 + 13572*x^24 - 626400*x^22 + 19017504*x^20 - 399367584*x^18 + 5938422336*x^16 - 62931852288*x^14 + 471988892160*x^12 - 2454342239232*x^10 + 8525609883648*x^8 - 18601330655232*x^6 + 22978114338816*x^4 - 13256604426240*x^2 + 2272560758784, 1); [polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
Copy content magma:/* self-contained Magma code snippet to compute the analytic class number formula */ Qx<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^28 - 174*x^26 + 13572*x^24 - 626400*x^22 + 19017504*x^20 - 399367584*x^18 + 5938422336*x^16 - 62931852288*x^14 + 471988892160*x^12 - 2454342239232*x^10 + 8525609883648*x^8 - 18601330655232*x^6 + 22978114338816*x^4 - 13256604426240*x^2 + 2272560758784); OK := Integers(K); DK := Discriminant(OK); UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK); r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK); hK := #clK; wK := #TorsionSubgroup(UK); 2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
Copy content oscar:# self-contained Oscar code snippet to compute the analytic class number formula Qx, x = polynomial_ring(QQ); K, a = number_field(x^28 - 174*x^26 + 13572*x^24 - 626400*x^22 + 19017504*x^20 - 399367584*x^18 + 5938422336*x^16 - 62931852288*x^14 + 471988892160*x^12 - 2454342239232*x^10 + 8525609883648*x^8 - 18601330655232*x^6 + 22978114338816*x^4 - 13256604426240*x^2 + 2272560758784); OK = ring_of_integers(K); DK = discriminant(OK); UK, fUK = unit_group(OK); clK, fclK = class_group(OK); r1,r2 = signature(K); RK = regulator(K); RR = parent(RK); hK = order(clK); wK = torsion_units_order(K); 2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_{28}$ (as 28T1):

Copy content comment:Galois group
 
Copy content sage:K.galois_group(type='pari')
 
Copy content gp:polgalois(K.pol)
 
Copy content magma:G = GaloisGroup(K);
 
Copy content oscar:G, Gtx = galois_group(K); degree(K) > 1 ? (G, transitive_group_identification(G)) : (G, nothing)
 
A cyclic group of order 28
The 28 conjugacy class representatives for $C_{28}$
Character table for $C_{28}$

Intermediate fields

\(\Q(\sqrt{29}) \), 4.4.14048064.1, 7.7.594823321.1, \(\Q(\zeta_{29})^+\)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Copy content comment:Intermediate fields
 
Copy content sage:K.subfields()[1:-1]
 
Copy content gp:L = nfsubfields(K); L[2..length(L)]
 
Copy content magma:L := Subfields(K); L[2..#L];
 
Copy content oscar:subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R R ${\href{/padicField/5.14.0.1}{14} }^{2}$ ${\href{/padicField/7.7.0.1}{7} }^{4}$ $28$ ${\href{/padicField/13.7.0.1}{7} }^{4}$ ${\href{/padicField/17.4.0.1}{4} }^{7}$ $28$ ${\href{/padicField/23.14.0.1}{14} }^{2}$ R $28$ $28$ ${\href{/padicField/41.4.0.1}{4} }^{7}$ $28$ $28$ ${\href{/padicField/53.7.0.1}{7} }^{4}$ ${\href{/padicField/59.1.0.1}{1} }^{28}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

Copy content comment:Frobenius cycle types
 
Copy content sage:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Sage: p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
Copy content gp:\\ to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Pari: p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
Copy content magma:// to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Magma: p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
Copy content oscar:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Oscar: p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display Deg $28$$2$$14$$42$
\(3\) Copy content Toggle raw display Deg $28$$2$$14$$14$
\(29\) Copy content Toggle raw display Deg $28$$28$$1$$27$

Spectrum of ring of integers

(0)(0)(2)(3)(5)(7)(11)(13)(17)(19)(23)(29)(31)(37)(41)(43)(47)(53)(59)