Normalized defining polynomial
\( x^{28} - 54 x^{26} + 1300 x^{24} - 18400 x^{22} + 170016 x^{20} - 1076768 x^{18} + 4775232 x^{16} - 14883840 x^{14} + 32248320 x^{12} - 47297536 x^{10} + 44808192 x^{8} - 25346048 x^{6} + 7454720 x^{4} - 860160 x^{2} + 16384 \)
Invariants
Degree: | $28$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
| |
Signature: | $[28, 0]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
| |
Discriminant: | \(463028542684026225381227850734902390950731116969984\)\(\medspace = 2^{42}\cdot 29^{26}\) | sage: K.disc()
gp: K.disc
magma: Discriminant(Integers(K));
| |
Root discriminant: | $64.49$ | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
| |
Ramified primes: | $2, 29$ | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(Integers(K)));
| |
$|\Gal(K/\Q)|$: | $28$ | ||
This field is Galois and abelian over $\Q$. | |||
Conductor: | \(232=2^{3}\cdot 29\) | ||
Dirichlet character group: | $\lbrace$$\chi_{232}(129,·)$, $\chi_{232}(5,·)$, $\chi_{232}(1,·)$, $\chi_{232}(9,·)$, $\chi_{232}(109,·)$, $\chi_{232}(13,·)$, $\chi_{232}(45,·)$, $\chi_{232}(141,·)$, $\chi_{232}(209,·)$, $\chi_{232}(149,·)$, $\chi_{232}(121,·)$, $\chi_{232}(25,·)$, $\chi_{232}(93,·)$, $\chi_{232}(197,·)$, $\chi_{232}(161,·)$, $\chi_{232}(165,·)$, $\chi_{232}(65,·)$, $\chi_{232}(81,·)$, $\chi_{232}(169,·)$, $\chi_{232}(225,·)$, $\chi_{232}(173,·)$, $\chi_{232}(49,·)$, $\chi_{232}(181,·)$, $\chi_{232}(57,·)$, $\chi_{232}(33,·)$, $\chi_{232}(117,·)$, $\chi_{232}(125,·)$, $\chi_{232}(53,·)$$\rbrace$ | ||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2}$, $\frac{1}{2} a^{3}$, $\frac{1}{4} a^{4}$, $\frac{1}{4} a^{5}$, $\frac{1}{8} a^{6}$, $\frac{1}{8} a^{7}$, $\frac{1}{16} a^{8}$, $\frac{1}{16} a^{9}$, $\frac{1}{32} a^{10}$, $\frac{1}{32} a^{11}$, $\frac{1}{64} a^{12}$, $\frac{1}{64} a^{13}$, $\frac{1}{128} a^{14}$, $\frac{1}{128} a^{15}$, $\frac{1}{256} a^{16}$, $\frac{1}{256} a^{17}$, $\frac{1}{512} a^{18}$, $\frac{1}{512} a^{19}$, $\frac{1}{1024} a^{20}$, $\frac{1}{1024} a^{21}$, $\frac{1}{2048} a^{22}$, $\frac{1}{2048} a^{23}$, $\frac{1}{4096} a^{24}$, $\frac{1}{4096} a^{25}$, $\frac{1}{8192} a^{26}$, $\frac{1}{8192} a^{27}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
Rank: | $27$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
| |
Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K!f(g): g in Generators(UK)];
| |
Regulator: | \( 18257396114183336 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
|
Class number formula
Galois group
$C_2\times C_{14}$ (as 28T2):
An abelian group of order 28 |
The 28 conjugacy class representatives for $C_2\times C_{14}$ |
Character table for $C_2\times C_{14}$ is not computed |
Intermediate fields
\(\Q(\sqrt{58}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{29}) \), \(\Q(\sqrt{2}, \sqrt{29})\), 7.7.594823321.1, 14.14.21518098026638558497865728.1, 14.14.742003380228915810271232.1, \(\Q(\zeta_{29})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | ${\href{/LocalNumberField/3.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/5.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/7.7.0.1}{7} }^{4}$ | ${\href{/LocalNumberField/11.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/13.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{14}$ | ${\href{/LocalNumberField/19.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/23.7.0.1}{7} }^{4}$ | R | ${\href{/LocalNumberField/31.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/37.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{14}$ | ${\href{/LocalNumberField/43.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/47.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/53.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{14}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
2 | Data not computed | ||||||
29 | Data not computed |