Normalized defining polynomial
\( x^{28} - 3 x^{27} - 111 x^{26} + 355 x^{25} + 5014 x^{24} - 16873 x^{23} - 121463 x^{22} + 430221 x^{21} + 1739875 x^{20} - 6558612 x^{19} - 15281943 x^{18} + 62805921 x^{17} + 82351466 x^{16} - 386151006 x^{15} - 261479693 x^{14} + 1531368941 x^{13} + 426084076 x^{12} - 3886142713 x^{11} - 137358612 x^{10} + 6204587325 x^{9} - 603585672 x^{8} - 6078001902 x^{7} + 902850052 x^{6} + 3489342686 x^{5} - 463454290 x^{4} - 1069073901 x^{3} + 59014540 x^{2} + 137225481 x + 9342001 \)
Invariants
| Degree: | $28$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[28, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(40485042622025269417087481839880287486644411644458770751953125=5^{21}\cdot 7^{14}\cdot 29^{24}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $158.58$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 7, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1015=5\cdot 7\cdot 29\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1015}(832,·)$, $\chi_{1015}(1,·)$, $\chi_{1015}(484,·)$, $\chi_{1015}(132,·)$, $\chi_{1015}(517,·)$, $\chi_{1015}(587,·)$, $\chi_{1015}(204,·)$, $\chi_{1015}(141,·)$, $\chi_{1015}(83,·)$, $\chi_{1015}(596,·)$, $\chi_{1015}(981,·)$, $\chi_{1015}(342,·)$, $\chi_{1015}(344,·)$, $\chi_{1015}(281,·)$, $\chi_{1015}(538,·)$, $\chi_{1015}(923,·)$, $\chi_{1015}(799,·)$, $\chi_{1015}(993,·)$, $\chi_{1015}(36,·)$, $\chi_{1015}(806,·)$, $\chi_{1015}(552,·)$, $\chi_{1015}(169,·)$, $\chi_{1015}(748,·)$, $\chi_{1015}(239,·)$, $\chi_{1015}(1009,·)$, $\chi_{1015}(692,·)$, $\chi_{1015}(223,·)$, $\chi_{1015}(958,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $\frac{1}{59} a^{23} - \frac{25}{59} a^{22} - \frac{1}{59} a^{21} - \frac{4}{59} a^{20} + \frac{21}{59} a^{19} + \frac{29}{59} a^{18} + \frac{17}{59} a^{17} - \frac{11}{59} a^{16} + \frac{3}{59} a^{15} + \frac{3}{59} a^{14} - \frac{2}{59} a^{13} - \frac{25}{59} a^{12} - \frac{1}{59} a^{11} + \frac{23}{59} a^{10} + \frac{23}{59} a^{9} - \frac{2}{59} a^{8} + \frac{22}{59} a^{7} - \frac{6}{59} a^{6} - \frac{7}{59} a^{5} + \frac{27}{59} a^{4} - \frac{18}{59} a^{3} + \frac{29}{59} a^{2} + \frac{17}{59} a$, $\frac{1}{1003} a^{24} + \frac{3}{1003} a^{23} + \frac{7}{1003} a^{22} + \frac{440}{1003} a^{21} + \frac{381}{1003} a^{20} + \frac{381}{1003} a^{19} + \frac{416}{1003} a^{18} - \frac{7}{1003} a^{17} + \frac{167}{1003} a^{16} + \frac{146}{1003} a^{15} + \frac{318}{1003} a^{14} - \frac{376}{1003} a^{13} - \frac{229}{1003} a^{12} + \frac{467}{1003} a^{11} + \frac{490}{1003} a^{10} - \frac{184}{1003} a^{9} + \frac{320}{1003} a^{8} + \frac{197}{1003} a^{7} + \frac{2}{1003} a^{6} + \frac{67}{1003} a^{5} + \frac{266}{1003} a^{4} + \frac{351}{1003} a^{3} + \frac{21}{59} a^{2} + \frac{122}{1003} a - \frac{3}{17}$, $\frac{1}{1003} a^{25} - \frac{2}{1003} a^{23} + \frac{419}{1003} a^{22} + \frac{64}{1003} a^{21} + \frac{241}{1003} a^{20} + \frac{276}{1003} a^{19} - \frac{252}{1003} a^{18} + \frac{188}{1003} a^{17} - \frac{355}{1003} a^{16} - \frac{120}{1003} a^{15} - \frac{327}{1003} a^{14} - \frac{104}{1003} a^{13} + \frac{151}{1003} a^{12} + \frac{92}{1003} a^{11} + \frac{352}{1003} a^{10} - \frac{131}{1003} a^{9} + \frac{240}{1003} a^{8} + \frac{414}{1003} a^{7} + \frac{61}{1003} a^{6} + \frac{65}{1003} a^{5} - \frac{447}{1003} a^{4} + \frac{307}{1003} a^{3} + \frac{54}{1003} a^{2} + \frac{460}{1003} a - \frac{8}{17}$, $\frac{1}{331993} a^{26} - \frac{1}{19529} a^{25} + \frac{121}{331993} a^{24} - \frac{2561}{331993} a^{23} + \frac{61326}{331993} a^{22} - \frac{28599}{331993} a^{21} - \frac{39714}{331993} a^{20} + \frac{966}{331993} a^{19} + \frac{15707}{331993} a^{18} + \frac{60443}{331993} a^{17} - \frac{154985}{331993} a^{16} - \frac{128892}{331993} a^{15} + \frac{1321}{331993} a^{14} - \frac{48596}{331993} a^{13} - \frac{23298}{331993} a^{12} + \frac{108759}{331993} a^{11} + \frac{134820}{331993} a^{10} - \frac{6701}{331993} a^{9} - \frac{4681}{331993} a^{8} + \frac{9026}{331993} a^{7} + \frac{161998}{331993} a^{6} + \frac{5295}{331993} a^{5} + \frac{128820}{331993} a^{4} - \frac{118749}{331993} a^{3} - \frac{100792}{331993} a^{2} - \frac{30737}{331993} a + \frac{1620}{5627}$, $\frac{1}{5926088102370930160403267829893130957194248316121248306177195923628508800979331026304895452574617} a^{27} + \frac{103534624477800512879542924762904535181832003086224146666316778874396376056863870140265561}{348593417786525303553133401758419468070249900948308723892776230801676988292901825076758556033801} a^{26} - \frac{1889029036090666522328325311262863911007879769257763981989924715249065681696018670495967609897}{5926088102370930160403267829893130957194248316121248306177195923628508800979331026304895452574617} a^{25} - \frac{1668158169483516201080884735736266509363010204639930930810033430266666550549315336715908580321}{5926088102370930160403267829893130957194248316121248306177195923628508800979331026304895452574617} a^{24} - \frac{5535892029145093419472394780484086126971819553914554856010005926910821640351288474401021657137}{5926088102370930160403267829893130957194248316121248306177195923628508800979331026304895452574617} a^{23} - \frac{380649023269827339726112118590558499635259750502224893074134840006697446185096550326252017820792}{5926088102370930160403267829893130957194248316121248306177195923628508800979331026304895452574617} a^{22} + \frac{2343831789705724472729635847399990207927891174033471040824941192235017123116080244776708442943087}{5926088102370930160403267829893130957194248316121248306177195923628508800979331026304895452574617} a^{21} + \frac{1314922332546218774189993663358288828275968070371209696565254766992853287082790840200679012203910}{5926088102370930160403267829893130957194248316121248306177195923628508800979331026304895452574617} a^{20} + \frac{435145673427045977894302205241918171500755508931059147426733335341950551563096295331195711416414}{5926088102370930160403267829893130957194248316121248306177195923628508800979331026304895452574617} a^{19} + \frac{570537283985891742203964524514711644356435815533007238514779502505613789750557254725666151572367}{5926088102370930160403267829893130957194248316121248306177195923628508800979331026304895452574617} a^{18} + \frac{2125987846320629222221566136209361834219762787466870707769702391011856357771075620366206999100266}{5926088102370930160403267829893130957194248316121248306177195923628508800979331026304895452574617} a^{17} + \frac{476652957466156167752672160566203524869787908722204776040085541269506773043728746252478296591008}{5926088102370930160403267829893130957194248316121248306177195923628508800979331026304895452574617} a^{16} + \frac{1442486646552121369830548770620591649866252401145292515071398972361198588383161353164997647606203}{5926088102370930160403267829893130957194248316121248306177195923628508800979331026304895452574617} a^{15} + \frac{1203790289261999954539330598938285432580705317338456227765325711131244109369370278094253756927027}{5926088102370930160403267829893130957194248316121248306177195923628508800979331026304895452574617} a^{14} + \frac{2065523747784132321980560774648625818329817241712408988429570407429559610769698424195078339336804}{5926088102370930160403267829893130957194248316121248306177195923628508800979331026304895452574617} a^{13} - \frac{1204861245224070047218751880035183909411639813109968120675673246881983091195764549315597760219134}{5926088102370930160403267829893130957194248316121248306177195923628508800979331026304895452574617} a^{12} - \frac{419475667859981496479491762217556022482418592196450130212620440551531287965388335091989009674239}{5926088102370930160403267829893130957194248316121248306177195923628508800979331026304895452574617} a^{11} + \frac{1733984851559024176307842322614658266477537166850457989869241400023867204564760254456022151118895}{5926088102370930160403267829893130957194248316121248306177195923628508800979331026304895452574617} a^{10} + \frac{1759832552872249231410200265739900114253073162354459558763041682650765198635619455365327658318310}{5926088102370930160403267829893130957194248316121248306177195923628508800979331026304895452574617} a^{9} - \frac{149327356584916328267936281568975111850415481203139060933418678504664120810397039989499267287784}{348593417786525303553133401758419468070249900948308723892776230801676988292901825076758556033801} a^{8} - \frac{1958247851933464218158965265822549516811820412273568340076234824833399242454211581950600841424160}{5926088102370930160403267829893130957194248316121248306177195923628508800979331026304895452574617} a^{7} - \frac{1598519195969463121451270845670569962190806891331664628029595522404874555187197823308919948433118}{5926088102370930160403267829893130957194248316121248306177195923628508800979331026304895452574617} a^{6} - \frac{60885897379814615723737196076400060155911989246176352750456846276958731124939628297999626536618}{5926088102370930160403267829893130957194248316121248306177195923628508800979331026304895452574617} a^{5} + \frac{1824027315960443516536935852453642806626608976327994305394034007772161914472663618387299488323720}{5926088102370930160403267829893130957194248316121248306177195923628508800979331026304895452574617} a^{4} - \frac{593191274596999085586061257415375467278718521707182843263829281606925442047278238103696721012393}{5926088102370930160403267829893130957194248316121248306177195923628508800979331026304895452574617} a^{3} - \frac{2802331527564842546628292965281379468282724830331982096140869711978497535746693816737419596388995}{5926088102370930160403267829893130957194248316121248306177195923628508800979331026304895452574617} a^{2} - \frac{778258572267784684625254941572115865525529526966833934536285465938084635039956794294279591245970}{5926088102370930160403267829893130957194248316121248306177195923628508800979331026304895452574617} a + \frac{3019273471969022383499822948469464990995040290211001142315723281677569799126033809041612371857}{100442171226625934922089285252425948427021157900360140782664337688618793236937814005167719535163}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $27$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 9549725081294820000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 28 |
| The 28 conjugacy class representatives for $C_{28}$ |
| Character table for $C_{28}$ is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.4.6125.1, 7.7.594823321.1, 14.14.27641779937927268828125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $28$ | $28$ | R | R | ${\href{/LocalNumberField/11.7.0.1}{7} }^{4}$ | $28$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{7}$ | ${\href{/LocalNumberField/19.7.0.1}{7} }^{4}$ | $28$ | R | ${\href{/LocalNumberField/31.14.0.1}{14} }^{2}$ | $28$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{14}$ | $28$ | $28$ | $28$ | ${\href{/LocalNumberField/59.1.0.1}{1} }^{28}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| 7 | Data not computed | ||||||
| $29$ | 29.14.12.1 | $x^{14} + 2407 x^{7} + 1839267$ | $7$ | $2$ | $12$ | $C_{14}$ | $[\ ]_{7}^{2}$ |
| 29.14.12.1 | $x^{14} + 2407 x^{7} + 1839267$ | $7$ | $2$ | $12$ | $C_{14}$ | $[\ ]_{7}^{2}$ | |