Normalized defining polynomial
\( x^{28} - 3 x^{27} - 100 x^{26} + 212 x^{25} + 4256 x^{24} - 5523 x^{23} - 99700 x^{22} + 59618 x^{21} + 1402407 x^{20} - 36832 x^{19} - 12199271 x^{18} - 5368181 x^{17} + 65218506 x^{16} + 54518578 x^{15} - 204434963 x^{14} - 248307765 x^{13} + 329592453 x^{12} + 566561234 x^{11} - 164293830 x^{10} - 586030579 x^{9} - 118191520 x^{8} + 199817979 x^{7} + 70371961 x^{6} - 24893187 x^{5} - 10823713 x^{4} + 572142 x^{3} + 491878 x^{2} + 43812 x + 811 \)
Invariants
| Degree: | $28$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[28, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3641753875281030900637863258408801848555415234088897705078125=3^{14}\cdot 5^{21}\cdot 43^{24}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $145.51$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 43$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(645=3\cdot 5\cdot 43\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{645}(256,·)$, $\chi_{645}(1,·)$, $\chi_{645}(514,·)$, $\chi_{645}(259,·)$, $\chi_{645}(4,·)$, $\chi_{645}(391,·)$, $\chi_{645}(64,·)$, $\chi_{645}(398,·)$, $\chi_{645}(557,·)$, $\chi_{645}(16,·)$, $\chi_{645}(274,·)$, $\chi_{645}(451,·)$, $\chi_{645}(527,·)$, $\chi_{645}(226,·)$, $\chi_{645}(484,·)$, $\chi_{645}(293,·)$, $\chi_{645}(422,·)$, $\chi_{645}(623,·)$, $\chi_{645}(107,·)$, $\chi_{645}(428,·)$, $\chi_{645}(173,·)$, $\chi_{645}(302,·)$, $\chi_{645}(47,·)$, $\chi_{645}(563,·)$, $\chi_{645}(121,·)$, $\chi_{645}(379,·)$, $\chi_{645}(188,·)$, $\chi_{645}(317,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $\frac{1}{7} a^{20} + \frac{3}{7} a^{19} + \frac{3}{7} a^{18} - \frac{1}{7} a^{17} + \frac{2}{7} a^{16} + \frac{2}{7} a^{15} + \frac{1}{7} a^{14} - \frac{1}{7} a^{11} + \frac{2}{7} a^{10} + \frac{2}{7} a^{9} + \frac{1}{7} a^{8} + \frac{1}{7} a^{7} + \frac{1}{7} a^{6} + \frac{1}{7} a^{5} - \frac{2}{7} a^{4} - \frac{1}{7} a^{3} - \frac{3}{7} a^{2} + \frac{1}{7} a + \frac{3}{7}$, $\frac{1}{7} a^{21} + \frac{1}{7} a^{19} - \frac{3}{7} a^{18} - \frac{2}{7} a^{17} + \frac{3}{7} a^{16} + \frac{2}{7} a^{15} - \frac{3}{7} a^{14} - \frac{1}{7} a^{12} - \frac{2}{7} a^{11} + \frac{3}{7} a^{10} + \frac{2}{7} a^{9} - \frac{2}{7} a^{8} - \frac{2}{7} a^{7} - \frac{2}{7} a^{6} + \frac{2}{7} a^{5} - \frac{2}{7} a^{4} + \frac{3}{7} a^{2} - \frac{2}{7}$, $\frac{1}{7} a^{22} + \frac{1}{7} a^{19} + \frac{2}{7} a^{18} - \frac{3}{7} a^{17} + \frac{2}{7} a^{15} - \frac{1}{7} a^{14} - \frac{1}{7} a^{13} - \frac{2}{7} a^{12} - \frac{3}{7} a^{11} + \frac{3}{7} a^{9} - \frac{3}{7} a^{8} - \frac{3}{7} a^{7} + \frac{1}{7} a^{6} - \frac{3}{7} a^{5} + \frac{2}{7} a^{4} - \frac{3}{7} a^{3} + \frac{3}{7} a^{2} - \frac{3}{7} a - \frac{3}{7}$, $\frac{1}{7} a^{23} - \frac{1}{7} a^{19} + \frac{1}{7} a^{18} + \frac{1}{7} a^{17} - \frac{3}{7} a^{15} - \frac{2}{7} a^{14} - \frac{2}{7} a^{13} - \frac{3}{7} a^{12} + \frac{1}{7} a^{11} + \frac{1}{7} a^{10} + \frac{2}{7} a^{9} + \frac{3}{7} a^{8} + \frac{3}{7} a^{6} + \frac{1}{7} a^{5} - \frac{1}{7} a^{4} - \frac{3}{7} a^{3} + \frac{3}{7} a - \frac{3}{7}$, $\frac{1}{7} a^{24} - \frac{3}{7} a^{19} - \frac{3}{7} a^{18} - \frac{1}{7} a^{17} - \frac{1}{7} a^{16} - \frac{1}{7} a^{14} - \frac{3}{7} a^{13} + \frac{1}{7} a^{12} - \frac{3}{7} a^{10} - \frac{2}{7} a^{9} + \frac{1}{7} a^{8} - \frac{3}{7} a^{7} + \frac{2}{7} a^{6} + \frac{2}{7} a^{4} - \frac{1}{7} a^{3} - \frac{2}{7} a + \frac{3}{7}$, $\frac{1}{7} a^{25} - \frac{1}{7} a^{19} + \frac{1}{7} a^{18} + \frac{3}{7} a^{17} - \frac{1}{7} a^{16} - \frac{2}{7} a^{15} + \frac{1}{7} a^{13} + \frac{1}{7} a^{11} - \frac{3}{7} a^{10} - \frac{2}{7} a^{7} + \frac{3}{7} a^{6} - \frac{2}{7} a^{5} - \frac{3}{7} a^{3} + \frac{3}{7} a^{2} - \frac{1}{7} a + \frac{2}{7}$, $\frac{1}{7} a^{26} - \frac{3}{7} a^{19} - \frac{1}{7} a^{18} - \frac{2}{7} a^{17} + \frac{2}{7} a^{15} + \frac{2}{7} a^{14} + \frac{1}{7} a^{12} + \frac{3}{7} a^{11} + \frac{2}{7} a^{10} + \frac{2}{7} a^{9} - \frac{1}{7} a^{8} - \frac{3}{7} a^{7} - \frac{1}{7} a^{6} + \frac{1}{7} a^{5} + \frac{2}{7} a^{4} + \frac{2}{7} a^{3} + \frac{3}{7} a^{2} + \frac{3}{7} a + \frac{3}{7}$, $\frac{1}{718336849845322742193380305387090099328573335382102569315745515519807090115467119752772255091823} a^{27} + \frac{4506810127072755501435282141641578268477042591830079013176724166036959451170655944729706352708}{718336849845322742193380305387090099328573335382102569315745515519807090115467119752772255091823} a^{26} - \frac{204524033663932352707266484275594178271761830718793130805104297044986697413616981348325882440}{718336849845322742193380305387090099328573335382102569315745515519807090115467119752772255091823} a^{25} + \frac{7021813503332415007766398264771641589304763577489595390304927645784250041059332302545087918962}{102619549977903248884768615055298585618367619340300367045106502217115298587923874250396036441689} a^{24} - \frac{11956105477737152439956723048389012331182416544658013469053556570905319663767181460495473811544}{718336849845322742193380305387090099328573335382102569315745515519807090115467119752772255091823} a^{23} - \frac{33905468198312588052182841424721905579271968071794229726589103698129751578971453310634872760881}{718336849845322742193380305387090099328573335382102569315745515519807090115467119752772255091823} a^{22} + \frac{8107095248334374551891408680196768359375813488244832877463289582056533732221726218362195243769}{718336849845322742193380305387090099328573335382102569315745515519807090115467119752772255091823} a^{21} + \frac{5537878627816607856910713174945919265763906885533150185338885848692628613619201150743161004040}{718336849845322742193380305387090099328573335382102569315745515519807090115467119752772255091823} a^{20} + \frac{221893343444841887047553056459017346979365191528820622282433076867173401692302863034192316019023}{718336849845322742193380305387090099328573335382102569315745515519807090115467119752772255091823} a^{19} + \frac{21829604622438743647444999237301303931275596778760739418336615437339385027250776594326033243272}{102619549977903248884768615055298585618367619340300367045106502217115298587923874250396036441689} a^{18} - \frac{218740760798418252958381568150396801597922043892373369061017103273066808414708103129505742349676}{718336849845322742193380305387090099328573335382102569315745515519807090115467119752772255091823} a^{17} - \frac{131013328474350256845905415746688578339798371045104102109264783125134850551021658294681283302455}{718336849845322742193380305387090099328573335382102569315745515519807090115467119752772255091823} a^{16} - \frac{331116787148803361620256838773881876870441141680314425100532746122723133466852347870095467888049}{718336849845322742193380305387090099328573335382102569315745515519807090115467119752772255091823} a^{15} + \frac{51421963818875014912329543241347101461507968195697085922159960885414080564005568372361921867675}{718336849845322742193380305387090099328573335382102569315745515519807090115467119752772255091823} a^{14} - \frac{69772199808427404600233246016381726456405792574072631337120693272057781689476505324622156934686}{718336849845322742193380305387090099328573335382102569315745515519807090115467119752772255091823} a^{13} - \frac{315278676053055227059864472371596572369817285282473990998223566952023350296607791511739874824955}{718336849845322742193380305387090099328573335382102569315745515519807090115467119752772255091823} a^{12} - \frac{216132099546180111631656448444611428780707148397684895042714500360278970730739031721921337824127}{718336849845322742193380305387090099328573335382102569315745515519807090115467119752772255091823} a^{11} + \frac{29059057796684568736441800522413908037425714840876987278975597071774461609039827499210357947742}{102619549977903248884768615055298585618367619340300367045106502217115298587923874250396036441689} a^{10} + \frac{298212984614441642829198519151211482250298708843620869326436878168923582960339176364875224494965}{718336849845322742193380305387090099328573335382102569315745515519807090115467119752772255091823} a^{9} + \frac{223952422284490035861645373473666569712967173243157961782170510914083295987789827417014173044693}{718336849845322742193380305387090099328573335382102569315745515519807090115467119752772255091823} a^{8} - \frac{229650824436898799581108506787383731972285769119870733134839438138373689448858630631038433004611}{718336849845322742193380305387090099328573335382102569315745515519807090115467119752772255091823} a^{7} - \frac{99583291337056261949813279201787483206885812458724597232281576608662488078078137672776927571731}{718336849845322742193380305387090099328573335382102569315745515519807090115467119752772255091823} a^{6} + \frac{357500736440944248969218296524171442680002612594590794784935336341726710574839460784913830878063}{718336849845322742193380305387090099328573335382102569315745515519807090115467119752772255091823} a^{5} + \frac{22305210939247377458870982290491430885543693687346744639769904363341018997553538294167165143566}{102619549977903248884768615055298585618367619340300367045106502217115298587923874250396036441689} a^{4} - \frac{146913435078372132114819349866382176973221507463015724555927578419793091663645097261707850128885}{718336849845322742193380305387090099328573335382102569315745515519807090115467119752772255091823} a^{3} + \frac{45699725234537255719926396138565704708469601544960589044588067960219622210115422793024721370946}{102619549977903248884768615055298585618367619340300367045106502217115298587923874250396036441689} a^{2} - \frac{130399107916145931167602218951992563599676762155382079628082993912729707207931817968816045569265}{718336849845322742193380305387090099328573335382102569315745515519807090115467119752772255091823} a - \frac{313348555288553887514798788162867147061015792660274056030804530209516095845990348172093508603646}{718336849845322742193380305387090099328573335382102569315745515519807090115467119752772255091823}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $27$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1634421464198991000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 28 |
| The 28 conjugacy class representatives for $C_{28}$ |
| Character table for $C_{28}$ is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{15})^+\), 7.7.6321363049.1, 14.14.3121846156036138781328125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $28$ | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{7}$ | ${\href{/LocalNumberField/11.14.0.1}{14} }^{2}$ | $28$ | $28$ | ${\href{/LocalNumberField/19.14.0.1}{14} }^{2}$ | $28$ | ${\href{/LocalNumberField/29.7.0.1}{7} }^{4}$ | ${\href{/LocalNumberField/31.7.0.1}{7} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{7}$ | ${\href{/LocalNumberField/41.14.0.1}{14} }^{2}$ | R | $28$ | $28$ | ${\href{/LocalNumberField/59.7.0.1}{7} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| 43 | Data not computed | ||||||