Normalized defining polynomial
\( x^{28} - x^{27} - 173 x^{26} + 173 x^{25} + 13399 x^{24} - 13399 x^{23} - 613001 x^{22} + 613001 x^{21} + 18404503 x^{20} - 18404503 x^{19} - 380963081 x^{18} + 380963081 x^{17} + 5557459255 x^{16} - 5557459255 x^{15} - 57374393033 x^{14} + 57374393033 x^{13} + 414614499127 x^{12} - 414614499127 x^{11} - 2039727740105 x^{10} + 2039727740105 x^{9} + 6485882143543 x^{8} - 6485882143543 x^{7} - 12115448511689 x^{6} + 12115448511689 x^{5} + 10862665827127 x^{4} - 10862665827127 x^{3} - 2393938599113 x^{2} + 2393938599113 x - 121377840329 \)
Invariants
| Degree: | $28$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[28, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(35394489068231220324814698212289719250778220848093751207381=23^{14}\cdot 29^{27}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $123.32$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $23, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(667=23\cdot 29\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{667}(576,·)$, $\chi_{667}(1,·)$, $\chi_{667}(323,·)$, $\chi_{667}(68,·)$, $\chi_{667}(645,·)$, $\chi_{667}(321,·)$, $\chi_{667}(137,·)$, $\chi_{667}(139,·)$, $\chi_{667}(206,·)$, $\chi_{667}(208,·)$, $\chi_{667}(275,·)$, $\chi_{667}(277,·)$, $\chi_{667}(24,·)$, $\chi_{667}(93,·)$, $\chi_{667}(415,·)$, $\chi_{667}(160,·)$, $\chi_{667}(482,·)$, $\chi_{667}(484,·)$, $\chi_{667}(229,·)$, $\chi_{667}(231,·)$, $\chi_{667}(298,·)$, $\chi_{667}(620,·)$, $\chi_{667}(622,·)$, $\chi_{667}(367,·)$, $\chi_{667}(114,·)$, $\chi_{667}(505,·)$, $\chi_{667}(254,·)$, $\chi_{667}(597,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{75943352179} a^{15} + \frac{23960563227}{75943352179} a^{14} - \frac{90}{75943352179} a^{13} + \frac{37783197765}{75943352179} a^{12} + \frac{3240}{75943352179} a^{11} - \frac{31751891381}{75943352179} a^{10} - \frac{59400}{75943352179} a^{9} - \frac{25834943051}{75943352179} a^{8} + \frac{583200}{75943352179} a^{7} + \frac{19560805963}{75943352179} a^{6} - \frac{2939328}{75943352179} a^{5} - \frac{2299871673}{75943352179} a^{4} + \frac{6531840}{75943352179} a^{3} - \frac{34521868580}{75943352179} a^{2} - \frac{4199040}{75943352179} a + \frac{13103928153}{75943352179}$, $\frac{1}{75943352179} a^{16} - \frac{96}{75943352179} a^{14} - \frac{8123324996}{75943352179} a^{13} + \frac{3744}{75943352179} a^{12} + \frac{26072532256}{75943352179} a^{11} - \frac{76032}{75943352179} a^{10} - \frac{22742445890}{75943352179} a^{9} + \frac{855360}{75943352179} a^{8} + \frac{23717812100}{75943352179} a^{7} - \frac{5225472}{75943352179} a^{6} - \frac{14137980342}{75943352179} a^{5} + \frac{15676416}{75943352179} a^{4} - \frac{33529411153}{75943352179} a^{3} - \frac{17915904}{75943352179} a^{2} + \frac{28739495274}{75943352179} a + \frac{3359232}{75943352179}$, $\frac{1}{75943352179} a^{17} + \frac{13790179426}{75943352179} a^{14} - \frac{4896}{75943352179} a^{13} + \frac{7978613104}{75943352179} a^{12} + \frac{235008}{75943352179} a^{11} - \frac{33189931306}{75943352179} a^{10} - \frac{4847040}{75943352179} a^{9} - \frac{26249451068}{75943352179} a^{8} + \frac{50761728}{75943352179} a^{7} - \frac{34884412369}{75943352179} a^{6} - \frac{266499072}{75943352179} a^{5} - \frac{26487035224}{75943352179} a^{4} + \frac{609140736}{75943352179} a^{3} - \frac{19795744709}{75943352179} a^{2} - \frac{399748608}{75943352179} a - \frac{33059884355}{75943352179}$, $\frac{1}{75943352179} a^{18} - \frac{5508}{75943352179} a^{14} + \frac{34001126580}{75943352179} a^{13} + \frac{286416}{75943352179} a^{12} + \frac{17263161885}{75943352179} a^{11} - \frac{6543504}{75943352179} a^{10} - \frac{14588149362}{75943352179} a^{9} + \frac{78522048}{75943352179} a^{8} + \frac{9413452710}{75943352179} a^{7} - \frac{499685760}{75943352179} a^{6} - \frac{18880484598}{75943352179} a^{5} + \frac{1541887488}{75943352179} a^{4} + \frac{5491560666}{75943352179} a^{3} - \frac{1798868736}{75943352179} a^{2} - \frac{33042433772}{75943352179} a + \frac{342641664}{75943352179}$, $\frac{1}{75943352179} a^{19} + \frac{19237293794}{75943352179} a^{14} - \frac{209304}{75943352179} a^{13} - \frac{33611871134}{75943352179} a^{12} + \frac{11302416}{75943352179} a^{11} - \frac{6465807673}{75943352179} a^{10} - \frac{248653152}{75943352179} a^{9} + \frac{28389111248}{75943352179} a^{8} + \frac{2712579840}{75943352179} a^{7} + \frac{34365369784}{75943352179} a^{6} - \frac{14647931136}{75943352179} a^{5} + \frac{20338199675}{75943352179} a^{4} + \frac{34178505984}{75943352179} a^{3} - \frac{17340716196}{75943352179} a^{2} - \frac{22785670656}{75943352179} a + \frac{30251696674}{75943352179}$, $\frac{1}{75943352179} a^{20} - \frac{246240}{75943352179} a^{14} + \frac{26990822388}{75943352179} a^{13} + \frac{14405040}{75943352179} a^{12} + \frac{14194438726}{75943352179} a^{11} - \frac{351039744}{75943352179} a^{10} + \frac{4020237435}{75943352179} a^{9} + \frac{4387996800}{75943352179} a^{8} + \frac{31985464833}{75943352179} a^{7} - \frac{28721433600}{75943352179} a^{6} - \frac{25384027028}{75943352179} a^{5} + \frac{14529163661}{75943352179} a^{4} + \frac{16759030096}{75943352179} a^{3} - \frac{31283333261}{75943352179} a^{2} - \frac{13367669422}{75943352179} a + \frac{20679432192}{75943352179}$, $\frac{1}{75943352179} a^{21} + \frac{37049052358}{75943352179} a^{14} - \frac{7756560}{75943352179} a^{13} + \frac{4679995215}{75943352179} a^{12} + \frac{446777856}{75943352179} a^{11} + \frac{14223464582}{75943352179} a^{10} - \frac{10238659200}{75943352179} a^{9} - \frac{17609435114}{75943352179} a^{8} - \frac{37000969958}{75943352179} a^{7} - \frac{3692298804}{75943352179} a^{6} - \frac{25760793448}{75943352179} a^{5} + \frac{5935469379}{75943352179} a^{4} - \frac{17693447420}{75943352179} a^{3} - \frac{35104004436}{75943352179} a^{2} - \frac{26028599081}{75943352179} a + \frac{30121013368}{75943352179}$, $\frac{1}{75943352179} a^{22} - \frac{9480240}{75943352179} a^{14} - \frac{2412788441}{75943352179} a^{13} + \frac{591566976}{75943352179} a^{12} - \frac{34209732518}{75943352179} a^{11} - \frac{15016700160}{75943352179} a^{10} + \frac{9641187024}{75943352179} a^{9} - \frac{34758197337}{75943352179} a^{8} + \frac{11817723781}{75943352179} a^{7} + \frac{965927843}{75943352179} a^{6} - \frac{26669033142}{75943352179} a^{5} + \frac{27286371774}{75943352179} a^{4} - \frac{13278455842}{75943352179} a^{3} - \frac{17554975693}{75943352179} a^{2} - \frac{5607797065}{75943352179} a - \frac{22223409367}{75943352179}$, $\frac{1}{75943352179} a^{23} + \frac{5112304509}{75943352179} a^{14} - \frac{261654624}{75943352179} a^{13} + \frac{17172629293}{75943352179} a^{12} + \frac{15699277440}{75943352179} a^{11} - \frac{15223004801}{75943352179} a^{10} + \frac{9662364095}{75943352179} a^{9} - \frac{36973795793}{75943352179} a^{8} - \frac{14022813224}{75943352179} a^{7} - \frac{26914370487}{75943352179} a^{6} + \frac{32961742747}{75943352179} a^{5} - \frac{12297106462}{75943352179} a^{4} + \frac{12023840022}{75943352179} a^{3} - \frac{7079821135}{75943352179} a^{2} - \frac{35813837171}{75943352179} a + \frac{20508731983}{75943352179}$, $\frac{1}{75943352179} a^{24} - \frac{330511104}{75943352179} a^{14} + \frac{21619922029}{75943352179} a^{13} + \frac{21483221760}{75943352179} a^{12} - \frac{23438838939}{75943352179} a^{11} - \frac{29321094107}{75943352179} a^{10} + \frac{12392027165}{75943352179} a^{9} - \frac{4370319763}{75943352179} a^{8} + \frac{13102528253}{75943352179} a^{7} - \frac{2553191018}{75943352179} a^{6} - \frac{31718230882}{75943352179} a^{5} + \frac{2196870724}{75943352179} a^{4} - \frac{14550668321}{75943352179} a^{3} - \frac{21073383224}{75943352179} a^{2} + \frac{36160469771}{75943352179} a - \frac{28407736372}{75943352179}$, $\frac{1}{75943352179} a^{25} + \frac{32156257966}{75943352179} a^{14} - \frac{8262777600}{75943352179} a^{13} + \frac{2829168501}{75943352179} a^{12} - \frac{21672047653}{75943352179} a^{11} - \frac{19075344386}{75943352179} a^{10} + \frac{32598316998}{75943352179} a^{9} - \frac{3580311620}{75943352179} a^{8} + \frac{7294831480}{75943352179} a^{7} - \frac{28280409871}{75943352179} a^{6} - \frac{10984353620}{75943352179} a^{5} - \frac{28301952365}{75943352179} a^{4} - \frac{17096224297}{75943352179} a^{3} - \frac{19155956342}{75943352179} a^{2} + \frac{7007194693}{75943352179} a - \frac{23649864060}{75943352179}$, $\frac{1}{75943352179} a^{26} - \frac{10741610880}{75943352179} a^{14} + \frac{11045002639}{75943352179} a^{13} + \frac{34663243509}{75943352179} a^{12} - \frac{11071964638}{75943352179} a^{11} - \frac{3825839052}{75943352179} a^{10} + \frac{26892214751}{75943352179} a^{9} - \frac{24932164819}{75943352179} a^{8} - \frac{30595746632}{75943352179} a^{7} + \frac{1515017883}{75943352179} a^{6} + \frac{31971090305}{75943352179} a^{5} + \frac{8849641870}{75943352179} a^{4} + \frac{15666953678}{75943352179} a^{3} + \frac{6060071532}{75943352179} a^{2} + \frac{8209231055}{75943352179} a - \frac{35414931065}{75943352179}$, $\frac{1}{75943352179} a^{27} + \frac{11730835786}{75943352179} a^{14} - \frac{20761509543}{75943352179} a^{13} + \frac{7261403193}{75943352179} a^{12} + \frac{16938114166}{75943352179} a^{11} + \frac{29437893760}{75943352179} a^{10} - \frac{573428861}{75943352179} a^{9} - \frac{3212901162}{75943352179} a^{8} + \frac{17802340352}{75943352179} a^{7} + \frac{29785244894}{75943352179} a^{6} + \frac{36119963764}{75943352179} a^{5} + \frac{24410335322}{75943352179} a^{4} + \frac{21402708391}{75943352179} a^{3} - \frac{4905841411}{75943352179} a^{2} + \frac{14391721952}{75943352179} a - \frac{9187060160}{75943352179}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $27$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 260881845825591150000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 28 |
| The 28 conjugacy class representatives for $C_{28}$ |
| Character table for $C_{28}$ is not computed |
Intermediate fields
| \(\Q(\sqrt{29}) \), 4.4.12901781.1, 7.7.594823321.1, \(\Q(\zeta_{29})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $28$ | $28$ | ${\href{/LocalNumberField/5.7.0.1}{7} }^{4}$ | ${\href{/LocalNumberField/7.14.0.1}{14} }^{2}$ | $28$ | ${\href{/LocalNumberField/13.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{7}$ | $28$ | R | R | $28$ | $28$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{7}$ | $28$ | $28$ | ${\href{/LocalNumberField/53.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/59.1.0.1}{1} }^{28}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $23$ | 23.14.7.2 | $x^{14} - 148035889 x^{2} + 27238603576$ | $2$ | $7$ | $7$ | $C_{14}$ | $[\ ]_{2}^{7}$ |
| 23.14.7.2 | $x^{14} - 148035889 x^{2} + 27238603576$ | $2$ | $7$ | $7$ | $C_{14}$ | $[\ ]_{2}^{7}$ | |
| 29 | Data not computed | ||||||