Normalized defining polynomial
\( x^{28} - 3 x^{27} - 76 x^{26} + 240 x^{25} + 2304 x^{24} - 7603 x^{23} - 36878 x^{22} + 128066 x^{21} + 343545 x^{20} - 1282732 x^{19} - 1916913 x^{18} + 8047861 x^{17} + 6204946 x^{16} - 32326986 x^{15} - 9514433 x^{14} + 82829451 x^{13} - 3555519 x^{12} - 130526538 x^{11} + 39192998 x^{10} + 114771575 x^{9} - 59689322 x^{8} - 42555117 x^{7} + 33120187 x^{6} - 652569 x^{5} - 2759285 x^{4} + 199864 x^{3} + 57190 x^{2} + 86 x - 59 \)
Invariants
| Degree: | $28$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[28, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(285508871014090994161304854408230095373577594757080078125=3^{14}\cdot 5^{21}\cdot 29^{24}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $103.82$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(435=3\cdot 5\cdot 29\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{435}(256,·)$, $\chi_{435}(1,·)$, $\chi_{435}(107,·)$, $\chi_{435}(197,·)$, $\chi_{435}(257,·)$, $\chi_{435}(136,·)$, $\chi_{435}(139,·)$, $\chi_{435}(94,·)$, $\chi_{435}(16,·)$, $\chi_{435}(248,·)$, $\chi_{435}(83,·)$, $\chi_{435}(407,·)$, $\chi_{435}(152,·)$, $\chi_{435}(413,·)$, $\chi_{435}(286,·)$, $\chi_{435}(226,·)$, $\chi_{435}(227,·)$, $\chi_{435}(422,·)$, $\chi_{435}(169,·)$, $\chi_{435}(199,·)$, $\chi_{435}(364,·)$, $\chi_{435}(349,·)$, $\chi_{435}(368,·)$, $\chi_{435}(49,·)$, $\chi_{435}(53,·)$, $\chi_{435}(233,·)$, $\chi_{435}(23,·)$, $\chi_{435}(181,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $\frac{1}{1003} a^{24} + \frac{309}{1003} a^{23} - \frac{269}{1003} a^{22} - \frac{11}{1003} a^{21} + \frac{439}{1003} a^{20} - \frac{12}{59} a^{19} - \frac{1}{1003} a^{18} - \frac{429}{1003} a^{17} - \frac{11}{59} a^{16} + \frac{330}{1003} a^{15} - \frac{322}{1003} a^{14} + \frac{91}{1003} a^{13} - \frac{350}{1003} a^{12} + \frac{55}{1003} a^{11} + \frac{130}{1003} a^{10} + \frac{184}{1003} a^{9} + \frac{104}{1003} a^{8} - \frac{331}{1003} a^{7} + \frac{77}{1003} a^{6} + \frac{100}{1003} a^{5} + \frac{477}{1003} a^{4} - \frac{216}{1003} a^{3} + \frac{432}{1003} a^{2} + \frac{358}{1003} a + \frac{6}{17}$, $\frac{1}{1003} a^{25} - \frac{465}{1003} a^{23} - \frac{139}{1003} a^{22} - \frac{174}{1003} a^{21} - \frac{450}{1003} a^{20} - \frac{154}{1003} a^{19} - \frac{120}{1003} a^{18} - \frac{22}{1003} a^{17} - \frac{61}{1003} a^{16} + \frac{14}{1003} a^{15} + \frac{292}{1003} a^{14} - \frac{385}{1003} a^{13} - \frac{7}{59} a^{12} + \frac{186}{1003} a^{11} + \frac{134}{1003} a^{10} + \frac{419}{1003} a^{9} - \frac{371}{1003} a^{8} + \frac{50}{1003} a^{7} + \frac{379}{1003} a^{6} - \frac{333}{1003} a^{5} - \frac{168}{1003} a^{4} - \frac{25}{1003} a^{3} + \frac{269}{1003} a^{2} + \frac{62}{1003} a - \frac{1}{17}$, $\frac{1}{1003} a^{26} + \frac{117}{1003} a^{23} + \frac{116}{1003} a^{22} + \frac{453}{1003} a^{21} + \frac{372}{1003} a^{20} + \frac{305}{1003} a^{19} - \frac{487}{1003} a^{18} + \frac{3}{59} a^{17} + \frac{320}{1003} a^{16} + \frac{283}{1003} a^{15} + \frac{335}{1003} a^{14} + \frac{70}{1003} a^{13} - \frac{78}{1003} a^{12} - \frac{369}{1003} a^{11} - \frac{314}{1003} a^{10} - \frac{66}{1003} a^{9} + \frac{266}{1003} a^{8} - \frac{77}{1003} a^{7} + \frac{367}{1003} a^{6} + \frac{194}{1003} a^{5} + \frac{117}{1003} a^{4} + \frac{129}{1003} a^{3} + \frac{342}{1003} a^{2} - \frac{87}{1003} a + \frac{2}{17}$, $\frac{1}{8207156142169915794115199435312309772091309033827421312437464299114611733} a^{27} + \frac{2346979375000998260322794874628667187557338332893455294514034632249113}{8207156142169915794115199435312309772091309033827421312437464299114611733} a^{26} + \frac{2142156255268386425731493822245901033313534339157932269894259657228815}{8207156142169915794115199435312309772091309033827421312437464299114611733} a^{25} + \frac{926485047979097795992964306750191813863526072345959006810049209698108}{8207156142169915794115199435312309772091309033827421312437464299114611733} a^{24} + \frac{4074371268286333007055044596078112636235334888886114795141683968867290294}{8207156142169915794115199435312309772091309033827421312437464299114611733} a^{23} - \frac{3038268121864730533738301345818214170507255819844521902154241924315527}{24795033662144760707296675031155014417194287111261091578360919332672543} a^{22} + \frac{2942677109492149458567714378947424373236152840253159381904458612333801948}{8207156142169915794115199435312309772091309033827421312437464299114611733} a^{21} - \frac{1239113470620506572118111450742601993421360695803035545776349886808047853}{8207156142169915794115199435312309772091309033827421312437464299114611733} a^{20} + \frac{1987980026940462953711683345750289670985162010001741826363565151038722568}{8207156142169915794115199435312309772091309033827421312437464299114611733} a^{19} + \frac{3982425366130634386827026778789449139400700985769919752865056150207231088}{8207156142169915794115199435312309772091309033827421312437464299114611733} a^{18} + \frac{1542776960777688181583199754540432508816922534834195090097140368884281659}{8207156142169915794115199435312309772091309033827421312437464299114611733} a^{17} - \frac{2007903081277259296230820486493007410843949060686612595713943610555974277}{8207156142169915794115199435312309772091309033827421312437464299114611733} a^{16} - \frac{3675994508844762180511220825096291650400579860148332165429933422600841793}{8207156142169915794115199435312309772091309033827421312437464299114611733} a^{15} + \frac{184420999772698154273025133267523812560834906628653975793889031068339190}{8207156142169915794115199435312309772091309033827421312437464299114611733} a^{14} - \frac{3965265711605178392419356996371791854599113713826665950669394022333933622}{8207156142169915794115199435312309772091309033827421312437464299114611733} a^{13} - \frac{2960817660309543146382206772347077752555479849834338082425389583667954738}{8207156142169915794115199435312309772091309033827421312437464299114611733} a^{12} - \frac{3161702126518385229878656723238130418773856337471110266157477256691556894}{8207156142169915794115199435312309772091309033827421312437464299114611733} a^{11} + \frac{3678697023337933990411081325967943016383860817927161200523348410799059506}{8207156142169915794115199435312309772091309033827421312437464299114611733} a^{10} + \frac{3460138039548557967384276852450570763331150556703906474448940768010689978}{8207156142169915794115199435312309772091309033827421312437464299114611733} a^{9} - \frac{2734840523860435206891522402485893463243718916433273863924340128953052419}{8207156142169915794115199435312309772091309033827421312437464299114611733} a^{8} - \frac{2920004423358987176659452946378202843420654948009087217151856976992867841}{8207156142169915794115199435312309772091309033827421312437464299114611733} a^{7} + \frac{685389177484688280979924887854453672216857154119781628646669649177471745}{8207156142169915794115199435312309772091309033827421312437464299114611733} a^{6} + \frac{3553056926487609525002557230540311731198350647205435878427640922529947509}{8207156142169915794115199435312309772091309033827421312437464299114611733} a^{5} - \frac{2652461999645259590413981548434169063829145576222311716143640624993406262}{8207156142169915794115199435312309772091309033827421312437464299114611733} a^{4} - \frac{720981617306118826888625832762176919808559163125149455312618940384718024}{8207156142169915794115199435312309772091309033827421312437464299114611733} a^{3} + \frac{2659383582071348228511855541255202798715036981245336657558050526362718287}{8207156142169915794115199435312309772091309033827421312437464299114611733} a^{2} - \frac{3630297823651341724498454702278597435730185850167926933069626823154632453}{8207156142169915794115199435312309772091309033827421312437464299114611733} a + \frac{32293147062636812693961750353803750306473673080072912707863814877977868}{139104341392710437188393210768005250374428966675041039193855327103637487}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $27$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 23509806182109426000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 28 |
| The 28 conjugacy class representatives for $C_{28}$ |
| Character table for $C_{28}$ is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{15})^+\), 7.7.594823321.1, 14.14.27641779937927268828125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $28$ | R | R | $28$ | ${\href{/LocalNumberField/11.14.0.1}{14} }^{2}$ | $28$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{7}$ | ${\href{/LocalNumberField/19.14.0.1}{14} }^{2}$ | $28$ | R | ${\href{/LocalNumberField/31.7.0.1}{7} }^{4}$ | $28$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{14}$ | $28$ | $28$ | $28$ | ${\href{/LocalNumberField/59.1.0.1}{1} }^{28}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| $29$ | 29.7.6.2 | $x^{7} - 29$ | $7$ | $1$ | $6$ | $C_7$ | $[\ ]_{7}$ |
| 29.7.6.2 | $x^{7} - 29$ | $7$ | $1$ | $6$ | $C_7$ | $[\ ]_{7}$ | |
| 29.7.6.2 | $x^{7} - 29$ | $7$ | $1$ | $6$ | $C_7$ | $[\ ]_{7}$ | |
| 29.7.6.2 | $x^{7} - 29$ | $7$ | $1$ | $6$ | $C_7$ | $[\ ]_{7}$ | |