Normalized defining polynomial
\( x^{28} - x^{27} - 54 x^{26} + 49 x^{25} + 1225 x^{24} - 1001 x^{23} - 15311 x^{22} + 11161 x^{21} + 116343 x^{20} - 74822 x^{19} - 560240 x^{18} + 313492 x^{17} + 1732121 x^{16} - 830930 x^{15} - 3415294 x^{14} + 1402578 x^{13} + 4180450 x^{12} - 1539463 x^{11} - 3009246 x^{10} + 1130459 x^{9} + 1156658 x^{8} - 526380 x^{7} - 185425 x^{6} + 123876 x^{5} - 2990 x^{4} - 8671 x^{3} + 1761 x^{2} - 106 x + 1 \)
Invariants
| Degree: | $28$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[28, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(27109279426973463946497256695670162843066176000405662417=113^{27}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $95.45$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $113$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(113\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{113}(64,·)$, $\chi_{113}(1,·)$, $\chi_{113}(2,·)$, $\chi_{113}(4,·)$, $\chi_{113}(7,·)$, $\chi_{113}(8,·)$, $\chi_{113}(14,·)$, $\chi_{113}(15,·)$, $\chi_{113}(16,·)$, $\chi_{113}(81,·)$, $\chi_{113}(83,·)$, $\chi_{113}(85,·)$, $\chi_{113}(28,·)$, $\chi_{113}(30,·)$, $\chi_{113}(32,·)$, $\chi_{113}(97,·)$, $\chi_{113}(98,·)$, $\chi_{113}(99,·)$, $\chi_{113}(105,·)$, $\chi_{113}(106,·)$, $\chi_{113}(109,·)$, $\chi_{113}(111,·)$, $\chi_{113}(112,·)$, $\chi_{113}(49,·)$, $\chi_{113}(53,·)$, $\chi_{113}(56,·)$, $\chi_{113}(57,·)$, $\chi_{113}(60,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $\frac{1}{211} a^{25} + \frac{105}{211} a^{24} - \frac{33}{211} a^{23} + \frac{92}{211} a^{22} - \frac{6}{211} a^{21} - \frac{18}{211} a^{20} + \frac{77}{211} a^{19} - \frac{101}{211} a^{18} + \frac{89}{211} a^{17} + \frac{84}{211} a^{16} - \frac{94}{211} a^{15} + \frac{39}{211} a^{14} + \frac{31}{211} a^{13} + \frac{43}{211} a^{12} - \frac{88}{211} a^{11} - \frac{34}{211} a^{10} - \frac{46}{211} a^{9} - \frac{66}{211} a^{8} + \frac{70}{211} a^{7} - \frac{83}{211} a^{6} + \frac{97}{211} a^{5} - \frac{12}{211} a^{4} - \frac{55}{211} a^{3} + \frac{24}{211} a^{2} + \frac{23}{211} a + \frac{47}{211}$, $\frac{1}{229795669} a^{26} + \frac{65570}{229795669} a^{25} + \frac{28122969}{229795669} a^{24} - \frac{8356690}{229795669} a^{23} + \frac{68773330}{229795669} a^{22} - \frac{16890898}{229795669} a^{21} - \frac{43681711}{229795669} a^{20} - \frac{92388335}{229795669} a^{19} + \frac{50579674}{229795669} a^{18} - \frac{98764543}{229795669} a^{17} + \frac{109218548}{229795669} a^{16} + \frac{18910175}{229795669} a^{15} + \frac{110295885}{229795669} a^{14} - \frac{3477431}{229795669} a^{13} - \frac{8855925}{229795669} a^{12} + \frac{22298459}{229795669} a^{11} + \frac{107292850}{229795669} a^{10} - \frac{83180062}{229795669} a^{9} - \frac{30785717}{229795669} a^{8} + \frac{50052123}{229795669} a^{7} - \frac{46513299}{229795669} a^{6} - \frac{75216599}{229795669} a^{5} - \frac{108667825}{229795669} a^{4} + \frac{78746630}{229795669} a^{3} - \frac{95971163}{229795669} a^{2} + \frac{40728532}{229795669} a + \frac{97964188}{229795669}$, $\frac{1}{47770253739616358179743954550686958346681} a^{27} - \frac{42429198729298159776726980766491}{47770253739616358179743954550686958346681} a^{26} - \frac{40212003079964902309617637521648326105}{47770253739616358179743954550686958346681} a^{25} + \frac{20492712004607359179398961757608396377615}{47770253739616358179743954550686958346681} a^{24} - \frac{5191540613224324052351723626855694428966}{47770253739616358179743954550686958346681} a^{23} - \frac{19269918370936786334501385505804597648842}{47770253739616358179743954550686958346681} a^{22} - \frac{20447551809743011722227223357571801596424}{47770253739616358179743954550686958346681} a^{21} - \frac{16197893674855708852684347803699338328513}{47770253739616358179743954550686958346681} a^{20} - \frac{17867128419978114243834150247194696541476}{47770253739616358179743954550686958346681} a^{19} - \frac{6160941216907722440288453228663691649025}{47770253739616358179743954550686958346681} a^{18} - \frac{10464747426078014393383802770725394269395}{47770253739616358179743954550686958346681} a^{17} + \frac{10623246077090522573929162301832606377878}{47770253739616358179743954550686958346681} a^{16} + \frac{12170593852874892434088684083478891792798}{47770253739616358179743954550686958346681} a^{15} + \frac{12647577305549979395351908333860046391}{304269132099467249552509264654057059533} a^{14} + \frac{11343225552792761280692101329556815935956}{47770253739616358179743954550686958346681} a^{13} - \frac{12732574566640281258707532073665697071199}{47770253739616358179743954550686958346681} a^{12} + \frac{7278403867231363267005502039540492425436}{47770253739616358179743954550686958346681} a^{11} - \frac{3044330112486089843263871601605018679398}{47770253739616358179743954550686958346681} a^{10} + \frac{8397503181616661030044451743343489081173}{47770253739616358179743954550686958346681} a^{9} - \frac{17168220472104340951862224817137704029164}{47770253739616358179743954550686958346681} a^{8} - \frac{14054607525657526985825109612262215893178}{47770253739616358179743954550686958346681} a^{7} + \frac{11503849448599064657065665813055986190067}{47770253739616358179743954550686958346681} a^{6} - \frac{3214699391061281717933901350691469471528}{47770253739616358179743954550686958346681} a^{5} - \frac{20043651879194821636938787776125284605310}{47770253739616358179743954550686958346681} a^{4} + \frac{9472451457054946111854354297456664054079}{47770253739616358179743954550686958346681} a^{3} - \frac{19917194040586578278651619395046088277834}{47770253739616358179743954550686958346681} a^{2} - \frac{1422868921612626891919356025728383450990}{47770253739616358179743954550686958346681} a + \frac{13066506138000212660289699154579655760937}{47770253739616358179743954550686958346681}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $27$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 5378761397781380000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 28 |
| The 28 conjugacy class representatives for $C_{28}$ |
| Character table for $C_{28}$ is not computed |
Intermediate fields
| \(\Q(\sqrt{113}) \), 4.4.1442897.1, 7.7.2081951752609.1, 14.14.489801110321660601428677553.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.7.0.1}{7} }^{4}$ | $28$ | $28$ | ${\href{/LocalNumberField/7.7.0.1}{7} }^{4}$ | ${\href{/LocalNumberField/11.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/13.14.0.1}{14} }^{2}$ | $28$ | $28$ | $28$ | $28$ | ${\href{/LocalNumberField/31.14.0.1}{14} }^{2}$ | $28$ | ${\href{/LocalNumberField/41.14.0.1}{14} }^{2}$ | $28$ | $28$ | ${\href{/LocalNumberField/53.7.0.1}{7} }^{4}$ | $28$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 113 | Data not computed | ||||||