Normalized defining polynomial
\( x^{28} - x^{27} - 231 x^{26} + 231 x^{25} + 23897 x^{24} - 23897 x^{23} - 1460903 x^{22} + 1460903 x^{21} + 58643801 x^{20} - 58643801 x^{19} - 1624287911 x^{18} + 1624287911 x^{17} + 31741662553 x^{16} - 31741662553 x^{15} - 439714884263 x^{14} + 439714884263 x^{13} + 4274850583897 x^{12} - 4274850583897 x^{11} - 28412803328679 x^{10} + 28412803328679 x^{9} + 122982646371673 x^{8} - 122982646371673 x^{7} - 317440480029351 x^{6} + 317440480029351 x^{5} + 407962316395865 x^{4} - 407962316395865 x^{3} - 150039834700455 x^{2} + 150039834700455 x - 22496485878439 \)
Invariants
| Degree: | $28$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[28, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2311051677985488109296342199847259892756218483742420538210789=29^{27}\cdot 31^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $143.17$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $29, 31$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(899=29\cdot 31\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{899}(1,·)$, $\chi_{899}(619,·)$, $\chi_{899}(342,·)$, $\chi_{899}(373,·)$, $\chi_{899}(776,·)$, $\chi_{899}(650,·)$, $\chi_{899}(247,·)$, $\chi_{899}(588,·)$, $\chi_{899}(528,·)$, $\chi_{899}(497,·)$, $\chi_{899}(340,·)$, $\chi_{899}(278,·)$, $\chi_{899}(495,·)$, $\chi_{899}(94,·)$, $\chi_{899}(867,·)$, $\chi_{899}(869,·)$, $\chi_{899}(807,·)$, $\chi_{899}(681,·)$, $\chi_{899}(683,·)$, $\chi_{899}(125,·)$, $\chi_{899}(743,·)$, $\chi_{899}(433,·)$, $\chi_{899}(309,·)$, $\chi_{899}(745,·)$, $\chi_{899}(185,·)$, $\chi_{899}(187,·)$, $\chi_{899}(61,·)$, $\chi_{899}(63,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{1908200831081} a^{15} + \frac{130313736210}{1908200831081} a^{14} - \frac{120}{1908200831081} a^{13} + \frac{670468193128}{1908200831081} a^{12} + \frac{5760}{1908200831081} a^{11} - \frac{877588031417}{1908200831081} a^{10} - \frac{140800}{1908200831081} a^{9} + \frac{585785328583}{1908200831081} a^{8} + \frac{1843200}{1908200831081} a^{7} + \frac{308727311762}{1908200831081} a^{6} - \frac{12386304}{1908200831081} a^{5} + \frac{897722112044}{1908200831081} a^{4} + \frac{36700160}{1908200831081} a^{3} + \frac{112756606993}{1908200831081} a^{2} - \frac{31457280}{1908200831081} a + \frac{80010138395}{1908200831081}$, $\frac{1}{1908200831081} a^{16} - \frac{128}{1908200831081} a^{14} - \frac{865690941401}{1908200831081} a^{13} + \frac{6656}{1908200831081} a^{12} + \frac{346418844897}{1908200831081} a^{11} - \frac{180224}{1908200831081} a^{10} - \frac{499347978313}{1908200831081} a^{9} + \frac{2703360}{1908200831081} a^{8} + \frac{809757360637}{1908200831081} a^{7} - \frac{22020096}{1908200831081} a^{6} - \frac{560998985315}{1908200831081} a^{5} + \frac{88080384}{1908200831081} a^{4} + \frac{335795110179}{1908200831081} a^{3} - \frac{134217728}{1908200831081} a^{2} + \frac{434034515973}{1908200831081} a + \frac{33554432}{1908200831081}$, $\frac{1}{1908200831081} a^{17} + \frac{548860644831}{1908200831081} a^{14} - \frac{8704}{1908200831081} a^{13} + \frac{297310166636}{1908200831081} a^{12} + \frac{557056}{1908200831081} a^{11} - \frac{246766965910}{1908200831081} a^{10} - \frac{15319040}{1908200831081} a^{9} - \frac{537753823979}{1908200831081} a^{8} + \frac{213909504}{1908200831081} a^{7} + \frac{792080298601}{1908200831081} a^{6} - \frac{1497366528}{1908200831081} a^{5} + \frac{752175586951}{1908200831081} a^{4} + \frac{4563402752}{1908200831081} a^{3} - \frac{398726437571}{1908200831081} a^{2} - \frac{3992977408}{1908200831081} a + \frac{700293559155}{1908200831081}$, $\frac{1}{1908200831081} a^{18} - \frac{9792}{1908200831081} a^{14} - \frac{626441541479}{1908200831081} a^{13} + \frac{678912}{1908200831081} a^{12} + \frac{204695908747}{1908200831081} a^{11} - \frac{20680704}{1908200831081} a^{10} + \frac{723781262483}{1908200831081} a^{9} + \frac{330891264}{1908200831081} a^{8} + \frac{236937026685}{1908200831081} a^{7} - \frac{2807562240}{1908200831081} a^{6} + \frac{818992778551}{1908200831081} a^{5} + \frac{11551113216}{1908200831081} a^{4} - \frac{596703301571}{1908200831081} a^{3} - \frac{17968398336}{1908200831081} a^{2} - \frac{765612698343}{1908200831081} a + \frac{4563402752}{1908200831081}$, $\frac{1}{1908200831081} a^{19} + \frac{727508264733}{1908200831081} a^{14} - \frac{496128}{1908200831081} a^{13} - \frac{689816731598}{1908200831081} a^{12} + \frac{35721216}{1908200831081} a^{11} + \frac{10119984962}{1908200831081} a^{10} - \frac{1047822336}{1908200831081} a^{9} + \frac{195176281935}{1908200831081} a^{8} + \frac{15241052160}{1908200831081} a^{7} - \frac{621487711330}{1908200831081} a^{6} - \frac{109735575552}{1908200831081} a^{5} + \frac{725189874191}{1908200831081} a^{4} + \frac{341399568384}{1908200831081} a^{3} + \frac{407002612295}{1908200831081} a^{2} - \frac{303466283008}{1908200831081} a - \frac{811266410451}{1908200831081}$, $\frac{1}{1908200831081} a^{20} - \frac{583680}{1908200831081} a^{14} + \frac{742137637717}{1908200831081} a^{13} + \frac{45527040}{1908200831081} a^{12} - \frac{28459823242}{1908200831081} a^{11} - \frac{1479278592}{1908200831081} a^{10} - \frac{769962570826}{1908200831081} a^{9} + \frac{24654643200}{1908200831081} a^{8} + \frac{390379480957}{1908200831081} a^{7} - \frac{215167795200}{1908200831081} a^{6} + \frac{489653200941}{1908200831081} a^{5} + \frac{903704739840}{1908200831081} a^{4} + \frac{751518527280}{1908200831081} a^{3} + \frac{480124205161}{1908200831081} a^{2} - \frac{16165291249}{1908200831081} a + \frac{367219703808}{1908200831081}$, $\frac{1}{1908200831081} a^{21} - \frac{529639029224}{1908200831081} a^{14} - \frac{24514560}{1908200831081} a^{13} - \frac{704535456925}{1908200831081} a^{12} + \frac{1882718208}{1908200831081} a^{11} + \frac{354352845011}{1908200831081} a^{10} - \frac{57527500800}{1908200831081} a^{9} + \frac{146053712817}{1908200831081} a^{8} + \frac{860671180800}{1908200831081} a^{7} - \frac{590299858053}{1908200831081} a^{6} - \frac{601330685637}{1908200831081} a^{5} + \frac{786665682005}{1908200831081} a^{4} + \frac{911064452070}{1908200831081} a^{3} - \frac{86459600699}{1908200831081} a^{2} - \frac{819958006863}{1908200831081} a + \frac{918639348287}{1908200831081}$, $\frac{1}{1908200831081} a^{22} - \frac{29962240}{1908200831081} a^{14} + \frac{617609292949}{1908200831081} a^{13} + \frac{2492858368}{1908200831081} a^{12} - \frac{137967723268}{1908200831081} a^{11} - \frac{84373667840}{1908200831081} a^{10} - \frac{540782380903}{1908200831081} a^{9} - \frac{461795096681}{1908200831081} a^{8} + \frac{247787272390}{1908200831081} a^{7} + \frac{471245638367}{1908200831081} a^{6} - \frac{723566039437}{1908200831081} a^{5} - \frac{356874003429}{1908200831081} a^{4} + \frac{783921707828}{1908200831081} a^{3} - \frac{192281926946}{1908200831081} a^{2} - \frac{917802248211}{1908200831081} a - \frac{49183958252}{1908200831081}$, $\frac{1}{1908200831081} a^{23} + \frac{211901980065}{1908200831081} a^{14} - \frac{1102610432}{1908200831081} a^{13} - \frac{495568626204}{1908200831081} a^{12} + \frac{88208834560}{1908200831081} a^{11} - \frac{71949300367}{1908200831081} a^{10} - \frac{864076826519}{1908200831081} a^{9} + \frac{427070048410}{1908200831081} a^{8} + \frac{359822305018}{1908200831081} a^{7} - \frac{823332299780}{1908200831081} a^{6} + \frac{620874896406}{1908200831081} a^{5} + \frac{43874542270}{1908200831081} a^{4} + \frac{303041328798}{1908200831081} a^{3} + \frac{562292082905}{1908200831081} a^{2} + \frac{71453488562}{1908200831081} a + \frac{723932989095}{1908200831081}$, $\frac{1}{1908200831081} a^{24} - \frac{1392771072}{1908200831081} a^{14} + \frac{126058177543}{1908200831081} a^{13} + \frac{120706826240}{1908200831081} a^{12} + \frac{621177417073}{1908200831081} a^{11} - \frac{385787629358}{1908200831081} a^{10} - \frac{402331582106}{1908200831081} a^{9} - \frac{881519810559}{1908200831081} a^{8} - \frac{374079124376}{1908200831081} a^{7} + \frac{403220440869}{1908200831081} a^{6} - \frac{150969566445}{1908200831081} a^{5} - \frac{444335739419}{1908200831081} a^{4} + \frac{220844597466}{1908200831081} a^{3} - \frac{341993206085}{1908200831081} a^{2} - \frac{73798212575}{1908200831081} a - \frac{410197235118}{1908200831081}$, $\frac{1}{1908200831081} a^{25} + \frac{630290887715}{1908200831081} a^{14} - \frac{46425702400}{1908200831081} a^{13} - \frac{515062020842}{1908200831081} a^{12} + \frac{3770421038}{1908200831081} a^{11} - \frac{21017921952}{1908200831081} a^{10} - \frac{439001146816}{1908200831081} a^{9} + \frac{326935855556}{1908200831081} a^{8} - \frac{879458283757}{1908200831081} a^{7} + \frac{393746315073}{1908200831081} a^{6} + \frac{313477866014}{1908200831081} a^{5} - \frac{776105939549}{1908200831081} a^{4} - \frac{396469601312}{1908200831081} a^{3} + \frac{11902030374}{1908200831081} a^{2} - \frac{908703419518}{1908200831081} a - \frac{495298242044}{1908200831081}$, $\frac{1}{1908200831081} a^{26} - \frac{60353413120}{1908200831081} a^{14} + \frac{700012092799}{1908200831081} a^{13} - \frac{344526809403}{1908200831081} a^{12} + \frac{809650386791}{1908200831081} a^{11} - \frac{379529656060}{1908200831081} a^{10} + \frac{587875043489}{1908200831081} a^{9} + \frac{598546763139}{1908200831081} a^{8} - \frac{940511238507}{1908200831081} a^{7} - \frac{592931844357}{1908200831081} a^{6} - \frac{587619002464}{1908200831081} a^{5} - \frac{14753085189}{1908200831081} a^{4} + \frac{796230209031}{1908200831081} a^{3} + \frac{236064379317}{1908200831081} a^{2} - \frac{622379300584}{1908200831081} a - \frac{607458974854}{1908200831081}$, $\frac{1}{1908200831081} a^{27} + \frac{287753170974}{1908200831081} a^{14} + \frac{45866940521}{1908200831081} a^{13} - \frac{722371145834}{1908200831081} a^{12} - \frac{36421341602}{1908200831081} a^{11} - \frac{698407439927}{1908200831081} a^{10} + \frac{56280270832}{1908200831081} a^{9} - \frac{458341795056}{1908200831081} a^{8} + \frac{434281410586}{1908200831081} a^{7} + \frac{118325890344}{1908200831081} a^{6} - \frac{887711532190}{1908200831081} a^{5} + \frac{211525499190}{1908200831081} a^{4} - \frac{216378582772}{1908200831081} a^{3} + \frac{547030119098}{1908200831081} a^{2} + \frac{52949397091}{1908200831081} a + \frac{163352263678}{1908200831081}$
Class group and class number
Not computed
Unit group
| Rank: | $27$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 28 |
| The 28 conjugacy class representatives for $C_{28}$ |
| Character table for $C_{28}$ is not computed |
Intermediate fields
| \(\Q(\sqrt{29}) \), 4.4.23437829.1, 7.7.594823321.1, \(\Q(\zeta_{29})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $28$ | $28$ | ${\href{/LocalNumberField/5.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/7.7.0.1}{7} }^{4}$ | $28$ | ${\href{/LocalNumberField/13.7.0.1}{7} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{7}$ | $28$ | ${\href{/LocalNumberField/23.14.0.1}{14} }^{2}$ | R | R | $28$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{7}$ | $28$ | $28$ | ${\href{/LocalNumberField/53.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/59.1.0.1}{1} }^{28}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 29 | Data not computed | ||||||
| 31 | Data not computed | ||||||