Normalized defining polynomial
\( x^{28} - x^{27} - 57 x^{26} + 57 x^{25} + 1451 x^{24} - 1451 x^{23} - 21749 x^{22} + 21749 x^{21} + 213035 x^{20} - 213035 x^{19} - 1430453 x^{18} + 1430453 x^{17} + 6715531 x^{16} - 6715531 x^{15} - 22059893 x^{14} + 22059893 x^{13} + 49878667 x^{12} - 49878667 x^{11} - 74814837 x^{10} + 74814837 x^{9} + 69567115 x^{8} - 69567115 x^{7} - 35437941 x^{6} + 35437941 x^{5} + 7799435 x^{4} - 7799435 x^{3} - 515445 x^{2} + 515445 x - 40309 \)
Invariants
| Degree: | $28$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[28, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2070706293589565601613551437543564286910572644210741=7^{14}\cdot 29^{27}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $68.03$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(203=7\cdot 29\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{203}(64,·)$, $\chi_{203}(1,·)$, $\chi_{203}(195,·)$, $\chi_{203}(69,·)$, $\chi_{203}(71,·)$, $\chi_{203}(55,·)$, $\chi_{203}(76,·)$, $\chi_{203}(141,·)$, $\chi_{203}(78,·)$, $\chi_{203}(41,·)$, $\chi_{203}(22,·)$, $\chi_{203}(153,·)$, $\chi_{203}(90,·)$, $\chi_{203}(27,·)$, $\chi_{203}(92,·)$, $\chi_{203}(197,·)$, $\chi_{203}(160,·)$, $\chi_{203}(97,·)$, $\chi_{203}(36,·)$, $\chi_{203}(104,·)$, $\chi_{203}(169,·)$, $\chi_{203}(48,·)$, $\chi_{203}(118,·)$, $\chi_{203}(183,·)$, $\chi_{203}(120,·)$, $\chi_{203}(57,·)$, $\chi_{203}(188,·)$, $\chi_{203}(190,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{8641} a^{15} - \frac{4274}{8641} a^{14} - \frac{30}{8641} a^{13} - \frac{1302}{8641} a^{12} + \frac{360}{8641} a^{11} - \frac{2960}{8641} a^{10} - \frac{2200}{8641} a^{9} - \frac{351}{8641} a^{8} - \frac{1441}{8641} a^{7} + \frac{2711}{8641} a^{6} - \frac{3455}{8641} a^{5} + \frac{2146}{8641} a^{4} + \frac{319}{8641} a^{3} - \frac{1073}{8641} a^{2} - \frac{1920}{8641} a - \frac{3263}{8641}$, $\frac{1}{8641} a^{16} - \frac{32}{8641} a^{14} + \frac{93}{8641} a^{13} + \frac{416}{8641} a^{12} - \frac{2418}{8641} a^{11} - \frac{2816}{8641} a^{10} - \frac{1743}{8641} a^{9} + \frac{1919}{8641} a^{8} - \frac{3731}{8641} a^{7} - \frac{4222}{8641} a^{6} + \frac{2945}{8641} a^{5} + \frac{4222}{8641} a^{4} - \frac{2945}{8641} a^{3} + \frac{449}{8641} a^{2} - \frac{393}{8641} a + \frac{512}{8641}$, $\frac{1}{8641} a^{17} + \frac{1581}{8641} a^{14} - \frac{544}{8641} a^{13} - \frac{877}{8641} a^{12} + \frac{63}{8641} a^{11} - \frac{1412}{8641} a^{10} + \frac{647}{8641} a^{9} + \frac{2319}{8641} a^{8} + \frac{1512}{8641} a^{7} + \frac{3287}{8641} a^{6} - \frac{2646}{8641} a^{5} - \frac{3401}{8641} a^{4} + \frac{2016}{8641} a^{3} - \frac{165}{8641} a^{2} - \frac{441}{8641} a - \frac{724}{8641}$, $\frac{1}{8641} a^{18} - \frac{612}{8641} a^{14} + \frac{3348}{8641} a^{13} + \frac{1967}{8641} a^{12} - \frac{266}{8641} a^{11} - \frac{3015}{8641} a^{10} - \frac{1804}{8641} a^{9} + \frac{3419}{8641} a^{8} + \frac{284}{8641} a^{7} - \frac{2801}{8641} a^{6} - \frac{2158}{8641} a^{5} - \frac{3538}{8641} a^{4} - \frac{3326}{8641} a^{3} + \frac{2336}{8641} a^{2} + \frac{1805}{8641} a + \frac{126}{8641}$, $\frac{1}{8641} a^{19} - \frac{2758}{8641} a^{14} + \frac{889}{8641} a^{13} - \frac{2118}{8641} a^{12} + \frac{1280}{8641} a^{11} + \frac{1286}{8641} a^{10} - \frac{3626}{8641} a^{9} + \frac{1497}{8641} a^{8} - \frac{3311}{8641} a^{7} - \frac{2098}{8641} a^{6} - \frac{953}{8641} a^{5} - \frac{3406}{8641} a^{4} - \frac{1179}{8641} a^{3} + \frac{1845}{8641} a^{2} + \frac{262}{8641} a - \frac{885}{8641}$, $\frac{1}{8641} a^{20} - \frac{479}{8641} a^{14} + \frac{1552}{8641} a^{13} - \frac{3621}{8641} a^{12} + \frac{451}{8641} a^{11} - \frac{1561}{8641} a^{10} - \frac{121}{8641} a^{9} - \frac{3577}{8641} a^{8} - \frac{1516}{8641} a^{7} + \frac{1520}{8641} a^{6} - \frac{1273}{8641} a^{5} - \frac{1596}{8641} a^{4} + \frac{265}{8641} a^{3} - \frac{3850}{8641} a^{2} + \frac{688}{8641} a - \frac{4073}{8641}$, $\frac{1}{8641} a^{21} + \frac{2223}{8641} a^{14} - \frac{709}{8641} a^{13} - \frac{1055}{8641} a^{12} - \frac{1941}{8641} a^{11} - \frac{837}{8641} a^{10} - \frac{3175}{8641} a^{9} + \frac{3175}{8641} a^{8} + \frac{2561}{8641} a^{7} + \frac{1146}{8641} a^{6} + \frac{2531}{8641} a^{5} - \frac{80}{8641} a^{4} + \frac{2054}{8641} a^{3} - \frac{3460}{8641} a^{2} + \frac{834}{8641} a + \frac{1044}{8641}$, $\frac{1}{8641} a^{22} + \frac{3934}{8641} a^{14} - \frac{3493}{8641} a^{13} - \frac{2330}{8641} a^{12} + \frac{2496}{8641} a^{11} + \frac{1104}{8641} a^{10} + \frac{2969}{8641} a^{9} - \frac{3497}{8641} a^{8} - \frac{1322}{8641} a^{7} - \frac{1245}{8641} a^{6} - \frac{1464}{8641} a^{5} + \frac{1328}{8641} a^{4} - \frac{4035}{8641} a^{3} + \frac{1197}{8641} a^{2} + \frac{550}{8641} a + \frac{3850}{8641}$, $\frac{1}{8641} a^{23} + \frac{3678}{8641} a^{14} + \frac{3357}{8641} a^{13} + \frac{451}{8641} a^{12} + \frac{1988}{8641} a^{11} - \frac{459}{8641} a^{10} + \frac{1662}{8641} a^{9} - \frac{3048}{8641} a^{8} - \frac{847}{8641} a^{7} - \frac{3544}{8641} a^{6} + \frac{1005}{8641} a^{5} - \frac{4142}{8641} a^{4} - \frac{804}{8641} a^{3} - \frac{3717}{8641} a^{2} - \frac{3745}{8641} a - \frac{3884}{8641}$, $\frac{1}{8641} a^{24} - \frac{3491}{8641} a^{14} - \frac{1542}{8641} a^{13} + \frac{3630}{8641} a^{12} - \frac{2466}{8641} a^{11} + \frac{882}{8641} a^{10} + \frac{576}{8641} a^{9} + \frac{2622}{8641} a^{8} - \frac{479}{8641} a^{7} + \frac{1661}{8641} a^{6} + \frac{1078}{8641} a^{5} + \frac{4082}{8641} a^{4} - \frac{1823}{8641} a^{3} + \frac{2453}{8641} a^{2} - \frac{1821}{8641} a - \frac{1035}{8641}$, $\frac{1}{8641} a^{25} + \frac{931}{8641} a^{14} + \frac{2592}{8641} a^{13} - \frac{2582}{8641} a^{12} - \frac{3944}{8641} a^{11} + \frac{1852}{8641} a^{10} + \frac{4271}{8641} a^{9} + \frac{1202}{8641} a^{8} + \frac{192}{8641} a^{7} + \frac{3284}{8641} a^{6} - \frac{3128}{8641} a^{5} - \frac{1884}{8641} a^{4} + \frac{1393}{8641} a^{3} + \frac{2530}{8641} a^{2} + \frac{1661}{8641} a - \frac{2295}{8641}$, $\frac{1}{8641} a^{26} - \frac{1815}{8641} a^{14} - \frac{575}{8641} a^{13} - \frac{1522}{8641} a^{12} + \frac{3691}{8641} a^{11} + \frac{3552}{8641} a^{10} + \frac{1485}{8641} a^{9} - \frac{1385}{8641} a^{8} - \frac{3141}{8641} a^{7} - \frac{3897}{8641} a^{6} + \frac{269}{8641} a^{5} - \frac{462}{8641} a^{4} - \frac{665}{8641} a^{3} - \frac{1732}{8641} a^{2} - \frac{3462}{8641} a - \frac{3779}{8641}$, $\frac{1}{8641} a^{27} + \frac{1733}{8641} a^{14} - \frac{4126}{8641} a^{13} - \frac{446}{8641} a^{12} + \frac{236}{8641} a^{11} + \frac{3787}{8641} a^{10} - \frac{2243}{8641} a^{9} - \frac{772}{8641} a^{8} - \frac{1089}{8641} a^{7} + \frac{4005}{8641} a^{6} + \frac{2079}{8641} a^{5} - \frac{2766}{8641} a^{4} - \frac{1694}{8641} a^{3} + \frac{1909}{8641} a^{2} + \frac{2385}{8641} a - \frac{3260}{8641}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $27$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 40658806140034130 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 28 |
| The 28 conjugacy class representatives for $C_{28}$ |
| Character table for $C_{28}$ is not computed |
Intermediate fields
| \(\Q(\sqrt{29}) \), 4.4.1195061.1, 7.7.594823321.1, \(\Q(\zeta_{29})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $28$ | $28$ | ${\href{/LocalNumberField/5.7.0.1}{7} }^{4}$ | R | $28$ | ${\href{/LocalNumberField/13.7.0.1}{7} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{7}$ | $28$ | ${\href{/LocalNumberField/23.7.0.1}{7} }^{4}$ | R | $28$ | $28$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{7}$ | $28$ | $28$ | ${\href{/LocalNumberField/53.7.0.1}{7} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{14}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $7$ | 7.14.7.1 | $x^{14} - 117649 x^{2} + 1647086$ | $2$ | $7$ | $7$ | $C_{14}$ | $[\ ]_{2}^{7}$ |
| 7.14.7.1 | $x^{14} - 117649 x^{2} + 1647086$ | $2$ | $7$ | $7$ | $C_{14}$ | $[\ ]_{2}^{7}$ | |
| 29 | Data not computed | ||||||