Normalized defining polynomial
\( x^{28} - 4 x^{27} - 70 x^{26} + 272 x^{25} + 2007 x^{24} - 7620 x^{23} - 31106 x^{22} + 115948 x^{21} + 290042 x^{20} - 1063528 x^{19} - 1718136 x^{18} + 6176908 x^{17} + 6666823 x^{16} - 23204920 x^{15} - 17269984 x^{14} + 56540840 x^{13} + 30251654 x^{12} - 88343908 x^{11} - 35706314 x^{10} + 86510324 x^{9} + 26775430 x^{8} - 51247828 x^{7} - 10970104 x^{6} + 17598492 x^{5} + 1821397 x^{4} - 3152012 x^{3} + 46562 x^{2} + 211268 x - 23953 \)
Invariants
| Degree: | $28$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[28, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(18917407352603402612306290142504402709970002327473311711232=2^{77}\cdot 29^{24}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $120.59$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(464=2^{4}\cdot 29\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{464}(1,·)$, $\chi_{464}(197,·)$, $\chi_{464}(257,·)$, $\chi_{464}(393,·)$, $\chi_{464}(141,·)$, $\chi_{464}(45,·)$, $\chi_{464}(401,·)$, $\chi_{464}(297,·)$, $\chi_{464}(277,·)$, $\chi_{464}(25,·)$, $\chi_{464}(397,·)$, $\chi_{464}(281,·)$, $\chi_{464}(285,·)$, $\chi_{464}(161,·)$, $\chi_{464}(373,·)$, $\chi_{464}(165,·)$, $\chi_{464}(65,·)$, $\chi_{464}(81,·)$, $\chi_{464}(169,·)$, $\chi_{464}(429,·)$, $\chi_{464}(413,·)$, $\chi_{464}(49,·)$, $\chi_{464}(181,·)$, $\chi_{464}(349,·)$, $\chi_{464}(233,·)$, $\chi_{464}(313,·)$, $\chi_{464}(117,·)$, $\chi_{464}(53,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{17} a^{15} + \frac{6}{17} a^{14} + \frac{8}{17} a^{13} - \frac{1}{17} a^{12} + \frac{8}{17} a^{11} + \frac{8}{17} a^{10} - \frac{6}{17} a^{9} - \frac{5}{17} a^{8} + \frac{2}{17} a^{7} - \frac{1}{17} a^{6} + \frac{6}{17} a^{5} - \frac{4}{17} a^{4} - \frac{5}{17} a^{3} - \frac{3}{17} a^{2} + \frac{3}{17} a$, $\frac{1}{17} a^{16} + \frac{6}{17} a^{14} + \frac{2}{17} a^{13} - \frac{3}{17} a^{12} - \frac{6}{17} a^{11} - \frac{3}{17} a^{10} - \frac{3}{17} a^{9} - \frac{2}{17} a^{8} + \frac{4}{17} a^{7} - \frac{5}{17} a^{6} - \frac{6}{17} a^{5} + \frac{2}{17} a^{4} - \frac{7}{17} a^{3} + \frac{4}{17} a^{2} - \frac{1}{17} a$, $\frac{1}{17} a^{17} - \frac{1}{17} a$, $\frac{1}{17} a^{18} - \frac{1}{17} a^{2}$, $\frac{1}{17} a^{19} - \frac{1}{17} a^{3}$, $\frac{1}{17} a^{20} - \frac{1}{17} a^{4}$, $\frac{1}{17} a^{21} - \frac{1}{17} a^{5}$, $\frac{1}{17} a^{22} - \frac{1}{17} a^{6}$, $\frac{1}{17} a^{23} - \frac{1}{17} a^{7}$, $\frac{1}{289} a^{24} - \frac{7}{289} a^{23} - \frac{6}{289} a^{22} + \frac{4}{289} a^{21} + \frac{6}{289} a^{20} + \frac{1}{289} a^{19} - \frac{6}{289} a^{18} - \frac{4}{289} a^{17} - \frac{3}{289} a^{16} + \frac{67}{289} a^{14} + \frac{96}{289} a^{13} + \frac{43}{289} a^{12} - \frac{33}{289} a^{11} - \frac{76}{289} a^{10} - \frac{76}{289} a^{9} + \frac{90}{289} a^{8} + \frac{80}{289} a^{7} + \frac{38}{289} a^{6} - \frac{37}{289} a^{5} - \frac{29}{289} a^{4} + \frac{122}{289} a^{3} + \frac{45}{289} a^{2} + \frac{75}{289} a - \frac{6}{17}$, $\frac{1}{289} a^{25} - \frac{4}{289} a^{23} - \frac{4}{289} a^{22} - \frac{8}{289} a^{20} + \frac{1}{289} a^{19} + \frac{5}{289} a^{18} + \frac{3}{289} a^{17} - \frac{4}{289} a^{16} - \frac{1}{289} a^{15} - \frac{30}{289} a^{14} - \frac{84}{289} a^{13} - \frac{4}{289} a^{12} - \frac{86}{289} a^{11} - \frac{47}{289} a^{10} - \frac{5}{17} a^{9} - \frac{140}{289} a^{8} - \frac{99}{289} a^{7} - \frac{111}{289} a^{6} + \frac{103}{289} a^{5} - \frac{13}{289} a^{4} - \frac{36}{289} a^{3} + \frac{33}{289} a^{2} - \frac{121}{289} a - \frac{8}{17}$, $\frac{1}{15698139221542769281} a^{26} + \frac{6108405607370287}{15698139221542769281} a^{25} - \frac{23517317032195676}{15698139221542769281} a^{24} + \frac{23069043629753715}{15698139221542769281} a^{23} - \frac{382238707362947693}{15698139221542769281} a^{22} - \frac{139716445921718211}{15698139221542769281} a^{21} - \frac{119956891304452291}{15698139221542769281} a^{20} + \frac{270156437789745809}{15698139221542769281} a^{19} + \frac{143484733476097478}{15698139221542769281} a^{18} - \frac{299141511581112184}{15698139221542769281} a^{17} - \frac{216127259526829208}{15698139221542769281} a^{16} - \frac{449115500779830690}{15698139221542769281} a^{15} - \frac{3061829901535367553}{15698139221542769281} a^{14} - \frac{71587092340123892}{15698139221542769281} a^{13} - \frac{4782703866820071824}{15698139221542769281} a^{12} + \frac{5274422981369140058}{15698139221542769281} a^{11} - \frac{6335204769763236030}{15698139221542769281} a^{10} + \frac{5091977876658823112}{15698139221542769281} a^{9} + \frac{1098030436986027959}{15698139221542769281} a^{8} - \frac{4487147056039712413}{15698139221542769281} a^{7} + \frac{5549475272892342842}{15698139221542769281} a^{6} - \frac{2237129696050613971}{15698139221542769281} a^{5} + \frac{4951641786020613409}{15698139221542769281} a^{4} - \frac{4120381262656247977}{15698139221542769281} a^{3} - \frac{6585772650167318001}{15698139221542769281} a^{2} - \frac{6237952836505258215}{15698139221542769281} a - \frac{134139842736508928}{923419954208398193}$, $\frac{1}{57644075786493336122536356085426288267313} a^{27} - \frac{1541539404109973477592}{57644075786493336122536356085426288267313} a^{26} - \frac{52922917094727059692883374969333433981}{57644075786493336122536356085426288267313} a^{25} - \frac{47792919482891096651010813882706687647}{57644075786493336122536356085426288267313} a^{24} - \frac{82531058679032858205993333564544731965}{3390827987440784477796256240319193427489} a^{23} + \frac{1518678486663700958917586570218682636202}{57644075786493336122536356085426288267313} a^{22} - \frac{1357789706675813478997702919347759569420}{57644075786493336122536356085426288267313} a^{21} + \frac{1061828565675958555672168858640487709411}{57644075786493336122536356085426288267313} a^{20} + \frac{987073919399265675219483996276260421291}{57644075786493336122536356085426288267313} a^{19} - \frac{199978868401865831499316797038839987732}{57644075786493336122536356085426288267313} a^{18} + \frac{672121144284601366208143320403495089754}{57644075786493336122536356085426288267313} a^{17} + \frac{575187030509192025895725277862335534765}{57644075786493336122536356085426288267313} a^{16} - \frac{97432958861262851036933892830171899022}{3390827987440784477796256240319193427489} a^{15} + \frac{2526908846955223728749597473868290653137}{57644075786493336122536356085426288267313} a^{14} + \frac{13183955946472295171839178641544117490315}{57644075786493336122536356085426288267313} a^{13} + \frac{6345297608232758347372450861073326062919}{57644075786493336122536356085426288267313} a^{12} - \frac{14862737998695272290050120285614810093011}{57644075786493336122536356085426288267313} a^{11} - \frac{6996640325294377871276975050806052211081}{57644075786493336122536356085426288267313} a^{10} + \frac{9416493662196438516243398639524977980779}{57644075786493336122536356085426288267313} a^{9} + \frac{27293487170840781404607231840971674670510}{57644075786493336122536356085426288267313} a^{8} + \frac{19343711322673296713886625314625163090503}{57644075786493336122536356085426288267313} a^{7} + \frac{6738859161087985776649932290665766263657}{57644075786493336122536356085426288267313} a^{6} + \frac{19875403544611030534118895974053328423023}{57644075786493336122536356085426288267313} a^{5} - \frac{18647354548424607450397215899254185015137}{57644075786493336122536356085426288267313} a^{4} - \frac{8054977676423595290213374440892108092373}{57644075786493336122536356085426288267313} a^{3} + \frac{5431163694316093566645191037627710707082}{57644075786493336122536356085426288267313} a^{2} + \frac{17414627903025071849819813179974548555397}{57644075786493336122536356085426288267313} a - \frac{1240022595818377081933372719823739415166}{3390827987440784477796256240319193427489}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $27$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 614883944308310100000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 28 |
| The 28 conjugacy class representatives for $C_{28}$ |
| Character table for $C_{28}$ is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), \(\Q(\zeta_{16})^+\), 7.7.594823321.1, 14.14.742003380228915810271232.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $28$ | $28$ | ${\href{/LocalNumberField/7.14.0.1}{14} }^{2}$ | $28$ | $28$ | ${\href{/LocalNumberField/17.1.0.1}{1} }^{28}$ | $28$ | ${\href{/LocalNumberField/23.14.0.1}{14} }^{2}$ | R | ${\href{/LocalNumberField/31.7.0.1}{7} }^{4}$ | $28$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{14}$ | $28$ | ${\href{/LocalNumberField/47.7.0.1}{7} }^{4}$ | $28$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{7}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 29 | Data not computed | ||||||