Properties

Label 28.28.1602366730...0000.1
Degree $28$
Signature $[28, 0]$
Discriminant $2^{28}\cdot 5^{21}\cdot 29^{24}$
Root discriminant $119.88$
Ramified primes $2, 5, 29$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group $C_{28}$ (as 28T1)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![31321, 148696, -1768008, -3584684, 20053613, 37949294, -66955254, -127991098, 112205318, 209457056, -115037594, -195680358, 79251721, 112864436, -38007063, -41758048, 12680015, 10049582, -2887069, -1566292, 436038, 154538, -42045, -9196, 2444, 298, -77, -4, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^28 - 4*x^27 - 77*x^26 + 298*x^25 + 2444*x^24 - 9196*x^23 - 42045*x^22 + 154538*x^21 + 436038*x^20 - 1566292*x^19 - 2887069*x^18 + 10049582*x^17 + 12680015*x^16 - 41758048*x^15 - 38007063*x^14 + 112864436*x^13 + 79251721*x^12 - 195680358*x^11 - 115037594*x^10 + 209457056*x^9 + 112205318*x^8 - 127991098*x^7 - 66955254*x^6 + 37949294*x^5 + 20053613*x^4 - 3584684*x^3 - 1768008*x^2 + 148696*x + 31321)
 
gp: K = bnfinit(x^28 - 4*x^27 - 77*x^26 + 298*x^25 + 2444*x^24 - 9196*x^23 - 42045*x^22 + 154538*x^21 + 436038*x^20 - 1566292*x^19 - 2887069*x^18 + 10049582*x^17 + 12680015*x^16 - 41758048*x^15 - 38007063*x^14 + 112864436*x^13 + 79251721*x^12 - 195680358*x^11 - 115037594*x^10 + 209457056*x^9 + 112205318*x^8 - 127991098*x^7 - 66955254*x^6 + 37949294*x^5 + 20053613*x^4 - 3584684*x^3 - 1768008*x^2 + 148696*x + 31321, 1)
 

Normalized defining polynomial

\( x^{28} - 4 x^{27} - 77 x^{26} + 298 x^{25} + 2444 x^{24} - 9196 x^{23} - 42045 x^{22} + 154538 x^{21} + 436038 x^{20} - 1566292 x^{19} - 2887069 x^{18} + 10049582 x^{17} + 12680015 x^{16} - 41758048 x^{15} - 38007063 x^{14} + 112864436 x^{13} + 79251721 x^{12} - 195680358 x^{11} - 115037594 x^{10} + 209457056 x^{9} + 112205318 x^{8} - 127991098 x^{7} - 66955254 x^{6} + 37949294 x^{5} + 20053613 x^{4} - 3584684 x^{3} - 1768008 x^{2} + 148696 x + 31321 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $28$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[28, 0]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(16023667304285831340989917799610839168000000000000000000000=2^{28}\cdot 5^{21}\cdot 29^{24}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $119.88$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 5, 29$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(580=2^{2}\cdot 5\cdot 29\)
Dirichlet character group:    $\lbrace$$\chi_{580}(1,·)$, $\chi_{580}(343,·)$, $\chi_{580}(107,·)$, $\chi_{580}(227,·)$, $\chi_{580}(81,·)$, $\chi_{580}(7,·)$, $\chi_{580}(523,·)$, $\chi_{580}(141,·)$, $\chi_{580}(401,·)$, $\chi_{580}(83,·)$, $\chi_{580}(407,·)$, $\chi_{580}(281,·)$, $\chi_{580}(103,·)$, $\chi_{580}(349,·)$, $\chi_{580}(223,·)$, $\chi_{580}(161,·)$, $\chi_{580}(547,·)$, $\chi_{580}(529,·)$, $\chi_{580}(169,·)$, $\chi_{580}(487,·)$, $\chi_{580}(429,·)$, $\chi_{580}(489,·)$, $\chi_{580}(49,·)$, $\chi_{580}(181,·)$, $\chi_{580}(567,·)$, $\chi_{580}(23,·)$, $\chi_{580}(123,·)$, $\chi_{580}(509,·)$$\rbrace$
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $\frac{1}{41} a^{23} - \frac{15}{41} a^{22} - \frac{3}{41} a^{21} + \frac{11}{41} a^{20} + \frac{6}{41} a^{19} - \frac{6}{41} a^{18} + \frac{6}{41} a^{17} + \frac{11}{41} a^{16} - \frac{16}{41} a^{15} + \frac{2}{41} a^{14} - \frac{17}{41} a^{13} - \frac{14}{41} a^{12} + \frac{5}{41} a^{11} + \frac{12}{41} a^{10} + \frac{1}{41} a^{9} + \frac{16}{41} a^{8} - \frac{7}{41} a^{7} - \frac{7}{41} a^{6} - \frac{15}{41} a^{5} + \frac{6}{41} a^{4} - \frac{11}{41} a^{3} - \frac{5}{41} a^{2} + \frac{6}{41} a - \frac{8}{41}$, $\frac{1}{697} a^{24} + \frac{8}{697} a^{23} + \frac{21}{697} a^{22} + \frac{270}{697} a^{21} - \frac{151}{697} a^{20} - \frac{114}{697} a^{19} + \frac{114}{697} a^{18} + \frac{26}{697} a^{17} - \frac{337}{697} a^{16} - \frac{79}{697} a^{15} + \frac{193}{697} a^{14} - \frac{36}{697} a^{13} - \frac{71}{697} a^{12} - \frac{324}{697} a^{11} + \frac{318}{697} a^{10} - \frac{2}{697} a^{9} + \frac{197}{697} a^{8} + \frac{7}{41} a^{7} + \frac{234}{697} a^{6} + \frac{71}{697} a^{5} - \frac{283}{697} a^{4} + \frac{70}{697} a^{3} - \frac{150}{697} a^{2} + \frac{171}{697} a + \frac{103}{697}$, $\frac{1}{697} a^{25} + \frac{8}{697} a^{23} + \frac{2}{41} a^{22} + \frac{324}{697} a^{21} + \frac{261}{697} a^{20} - \frac{62}{697} a^{19} + \frac{202}{697} a^{18} - \frac{239}{697} a^{17} - \frac{307}{697} a^{16} + \frac{9}{697} a^{15} - \frac{84}{697} a^{14} + \frac{47}{697} a^{13} + \frac{227}{697} a^{12} - \frac{320}{697} a^{11} + \frac{157}{697} a^{10} + \frac{264}{697} a^{9} + \frac{56}{697} a^{8} + \frac{319}{697} a^{7} - \frac{67}{697} a^{6} - \frac{222}{697} a^{5} - \frac{148}{697} a^{4} + \frac{3}{17} a^{3} - \frac{278}{697} a^{2} - \frac{262}{697} a + \frac{162}{697}$, $\frac{1}{3327802946395527005877492877} a^{26} + \frac{21306286383589866871564}{56403439769415711964025303} a^{25} - \frac{1921032960000991237306159}{3327802946395527005877492877} a^{24} + \frac{36037282280364944247784555}{3327802946395527005877492877} a^{23} - \frac{1537397787448452268902161619}{3327802946395527005877492877} a^{22} - \frac{52271334121454323271457239}{195753114493854529757499581} a^{21} + \frac{21715278697616106161199875}{81165925521842122094572997} a^{20} - \frac{1296215910458651992571461597}{3327802946395527005877492877} a^{19} + \frac{456390537868672125043607942}{3327802946395527005877492877} a^{18} - \frac{44223685275104924191645840}{3327802946395527005877492877} a^{17} + \frac{778778749753993322310253136}{3327802946395527005877492877} a^{16} + \frac{1678730820342921370111543}{81165925521842122094572997} a^{15} - \frac{1086521853099071566996476498}{3327802946395527005877492877} a^{14} - \frac{310467949800067175604089304}{3327802946395527005877492877} a^{13} + \frac{274555801385351190533020193}{3327802946395527005877492877} a^{12} - \frac{50842785133066588128365120}{195753114493854529757499581} a^{11} - \frac{880929932054623792403813061}{3327802946395527005877492877} a^{10} + \frac{601435888108954113878615715}{3327802946395527005877492877} a^{9} - \frac{718639023289249748375965705}{3327802946395527005877492877} a^{8} + \frac{372983152826153464691034701}{3327802946395527005877492877} a^{7} + \frac{1090304869563016323740975812}{3327802946395527005877492877} a^{6} + \frac{165026731675020855953317502}{3327802946395527005877492877} a^{5} - \frac{18452700351600722184616829}{81165925521842122094572997} a^{4} + \frac{1254169859093402145148395470}{3327802946395527005877492877} a^{3} + \frac{1194186918528984196631539180}{3327802946395527005877492877} a^{2} + \frac{42864736645662587624635521}{3327802946395527005877492877} a + \frac{5528873663259365506259688}{3327802946395527005877492877}$, $\frac{1}{105868388445614249989656841323255168431850035394329133097} a^{27} - \frac{8572536642936610400801405001}{105868388445614249989656841323255168431850035394329133097} a^{26} - \frac{13334637758396465293931527677437634435443341953517818}{105868388445614249989656841323255168431850035394329133097} a^{25} - \frac{18102216521737046057683215976281801034373037789206003}{105868388445614249989656841323255168431850035394329133097} a^{24} + \frac{521460884220647821802654871663791058304999188177173511}{105868388445614249989656841323255168431850035394329133097} a^{23} - \frac{546674505714200912867814563202193391143776523507204393}{6227552261506720587626873019015009907755884434960537241} a^{22} - \frac{16548774962863026312867417622346748866057208559732054969}{105868388445614249989656841323255168431850035394329133097} a^{21} - \frac{22204808107355584186761992609482364916825528621692893151}{105868388445614249989656841323255168431850035394329133097} a^{20} + \frac{40309181601472557325651617735527825826457634798145145950}{105868388445614249989656841323255168431850035394329133097} a^{19} + \frac{50343688199720320532609283803710328149390707936251346080}{105868388445614249989656841323255168431850035394329133097} a^{18} + \frac{44850057876324977259976323959419403711090493023865773894}{105868388445614249989656841323255168431850035394329133097} a^{17} - \frac{44583580652205678802775175409384367978935046128884023488}{105868388445614249989656841323255168431850035394329133097} a^{16} + \frac{2650279892535069984384518250674189220290966151856618244}{105868388445614249989656841323255168431850035394329133097} a^{15} - \frac{1002570632736963452841394486130635537573411101574380793}{6227552261506720587626873019015009907755884434960537241} a^{14} + \frac{7101838026816329726359047881208523964474168386640556599}{105868388445614249989656841323255168431850035394329133097} a^{13} + \frac{6115505530626219271865280884875530276668493040492251582}{105868388445614249989656841323255168431850035394329133097} a^{12} + \frac{7212059820861688924056548721893101563094451534511155144}{105868388445614249989656841323255168431850035394329133097} a^{11} - \frac{13848172640281374131984821864982494065517236305121523114}{105868388445614249989656841323255168431850035394329133097} a^{10} - \frac{6875896964919378856385824068212313709703124394372208866}{105868388445614249989656841323255168431850035394329133097} a^{9} + \frac{267970745998848879442269361676440272225323190481007040}{105868388445614249989656841323255168431850035394329133097} a^{8} + \frac{683988716121086421895530944729846174501546770753697459}{6227552261506720587626873019015009907755884434960537241} a^{7} - \frac{48519497324198935156004948423299269691240497819401859596}{105868388445614249989656841323255168431850035394329133097} a^{6} - \frac{10567372058499089826386131890348188192590810562792880787}{105868388445614249989656841323255168431850035394329133097} a^{5} - \frac{24578203373453128787102253852487588467494177697227065238}{105868388445614249989656841323255168431850035394329133097} a^{4} + \frac{38714142263036844853190724532959331131163044830652061314}{105868388445614249989656841323255168431850035394329133097} a^{3} + \frac{11873556517527534646580446020070705434020103720389546830}{105868388445614249989656841323255168431850035394329133097} a^{2} - \frac{10337246843263210473704853880945134255014049576206746979}{105868388445614249989656841323255168431850035394329133097} a - \frac{17203342888115763067827984501126165528135569125698269156}{105868388445614249989656841323255168431850035394329133097}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $27$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 258467010943663670000 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_{28}$ (as 28T1):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A cyclic group of order 28
The 28 conjugacy class representatives for $C_{28}$
Character table for $C_{28}$ is not computed

Intermediate fields

\(\Q(\sqrt{5}) \), \(\Q(\zeta_{20})^+\), 7.7.594823321.1, 14.14.27641779937927268828125.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R $28$ R $28$ ${\href{/LocalNumberField/11.14.0.1}{14} }^{2}$ $28$ ${\href{/LocalNumberField/17.4.0.1}{4} }^{7}$ ${\href{/LocalNumberField/19.7.0.1}{7} }^{4}$ $28$ R ${\href{/LocalNumberField/31.14.0.1}{14} }^{2}$ $28$ ${\href{/LocalNumberField/41.1.0.1}{1} }^{28}$ $28$ $28$ $28$ ${\href{/LocalNumberField/59.1.0.1}{1} }^{28}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
5Data not computed
$29$29.14.12.1$x^{14} + 2407 x^{7} + 1839267$$7$$2$$12$$C_{14}$$[\ ]_{7}^{2}$
29.14.12.1$x^{14} + 2407 x^{7} + 1839267$$7$$2$$12$$C_{14}$$[\ ]_{7}^{2}$