Properties

Label 28.28.140...000.3
Degree $28$
Signature $[28, 0]$
Discriminant $1.409\times 10^{67}$
Root discriminant \(250.14\)
Ramified primes $2,3,5,7$
Class number not computed
Class group not computed
Galois group $C_2\times C_{14}$ (as 28T2)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / Pari/GP / SageMath

Normalized defining polynomial

Copy content comment:Define the number field
 
Copy content sage:x = polygen(QQ); K.<a> = NumberField(x^28 - 259*x^26 - 126*x^25 + 27692*x^24 + 25270*x^23 - 1593004*x^22 - 2067704*x^21 + 54012987*x^20 + 89930554*x^19 - 1114299515*x^18 - 2272374468*x^17 + 13932913589*x^16 + 34374275292*x^15 - 100947318765*x^14 - 311107593972*x^13 + 366821491603*x^12 + 1643423997740*x^11 - 232371293847*x^10 - 4740100579774*x^9 - 2545586025094*x^8 + 6218077995010*x^7 + 7007137937989*x^6 - 1338107929410*x^5 - 5058056304826*x^4 - 2068468489948*x^3 + 218914939523*x^2 + 271046334062*x + 38174136301)
 
Copy content gp:K = bnfinit(y^28 - 259*y^26 - 126*y^25 + 27692*y^24 + 25270*y^23 - 1593004*y^22 - 2067704*y^21 + 54012987*y^20 + 89930554*y^19 - 1114299515*y^18 - 2272374468*y^17 + 13932913589*y^16 + 34374275292*y^15 - 100947318765*y^14 - 311107593972*y^13 + 366821491603*y^12 + 1643423997740*y^11 - 232371293847*y^10 - 4740100579774*y^9 - 2545586025094*y^8 + 6218077995010*y^7 + 7007137937989*y^6 - 1338107929410*y^5 - 5058056304826*y^4 - 2068468489948*y^3 + 218914939523*y^2 + 271046334062*y + 38174136301, 1)
 
Copy content magma:R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^28 - 259*x^26 - 126*x^25 + 27692*x^24 + 25270*x^23 - 1593004*x^22 - 2067704*x^21 + 54012987*x^20 + 89930554*x^19 - 1114299515*x^18 - 2272374468*x^17 + 13932913589*x^16 + 34374275292*x^15 - 100947318765*x^14 - 311107593972*x^13 + 366821491603*x^12 + 1643423997740*x^11 - 232371293847*x^10 - 4740100579774*x^9 - 2545586025094*x^8 + 6218077995010*x^7 + 7007137937989*x^6 - 1338107929410*x^5 - 5058056304826*x^4 - 2068468489948*x^3 + 218914939523*x^2 + 271046334062*x + 38174136301);
 
Copy content oscar:Qx, x = polynomial_ring(QQ); K, a = number_field(x^28 - 259*x^26 - 126*x^25 + 27692*x^24 + 25270*x^23 - 1593004*x^22 - 2067704*x^21 + 54012987*x^20 + 89930554*x^19 - 1114299515*x^18 - 2272374468*x^17 + 13932913589*x^16 + 34374275292*x^15 - 100947318765*x^14 - 311107593972*x^13 + 366821491603*x^12 + 1643423997740*x^11 - 232371293847*x^10 - 4740100579774*x^9 - 2545586025094*x^8 + 6218077995010*x^7 + 7007137937989*x^6 - 1338107929410*x^5 - 5058056304826*x^4 - 2068468489948*x^3 + 218914939523*x^2 + 271046334062*x + 38174136301)
 

\( x^{28} - 259 x^{26} - 126 x^{25} + 27692 x^{24} + 25270 x^{23} - 1593004 x^{22} - 2067704 x^{21} + \cdots + 38174136301 \) Copy content Toggle raw display

Copy content comment:Defining polynomial
 
Copy content sage:K.defining_polynomial()
 
Copy content gp:K.pol
 
Copy content magma:DefiningPolynomial(K);
 
Copy content oscar:defining_polynomial(K)
 

Invariants

Degree:  $28$
Copy content comment:Degree over Q
 
Copy content sage:K.degree()
 
Copy content gp:poldegree(K.pol)
 
Copy content magma:Degree(K);
 
Copy content oscar:degree(K)
 
Signature:  $[28, 0]$
Copy content comment:Signature
 
Copy content sage:K.signature()
 
Copy content gp:K.sign
 
Copy content magma:Signature(K);
 
Copy content oscar:signature(K)
 
Discriminant:   \(14093520972294144372749526040992276772190449136895590400000000000000\) \(\medspace = 2^{28}\cdot 3^{14}\cdot 5^{14}\cdot 7^{50}\) Copy content Toggle raw display
Copy content comment:Discriminant
 
Copy content sage:K.disc()
 
Copy content gp:K.disc
 
Copy content magma:OK := Integers(K); Discriminant(OK);
 
Copy content oscar:OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(250.14\)
Copy content comment:Root discriminant
 
Copy content sage:(K.disc().abs())^(1./K.degree())
 
Copy content gp:abs(K.disc)^(1/poldegree(K.pol))
 
Copy content magma:Abs(Discriminant(OK))^(1/Degree(K));
 
Copy content oscar:OK = ring_of_integers(K); (1.0 * abs(discriminant(OK)))^(1/degree(K))
 
Galois root discriminant:  $2\cdot 3^{1/2}5^{1/2}7^{25/14}\approx 250.1377667287264$
Ramified primes:   \(2\), \(3\), \(5\), \(7\) Copy content Toggle raw display
Copy content comment:Ramified primes
 
Copy content sage:K.disc().support()
 
Copy content gp:factor(abs(K.disc))[,1]~
 
Copy content magma:PrimeDivisors(Discriminant(OK));
 
Copy content oscar:prime_divisors(discriminant(OK))
 
Discriminant root field:  \(\Q\)
$\Aut(K/\Q)$ $=$ $\Gal(K/\Q)$:   $C_2\times C_{14}$
Copy content comment:Autmorphisms
 
Copy content sage:K.automorphisms()
 
Copy content magma:Automorphisms(K);
 
Copy content oscar:automorphisms(K)
 
This field is Galois and abelian over $\Q$.
Conductor:  \(2940=2^{2}\cdot 3\cdot 5\cdot 7^{2}\)
Dirichlet character group:    $\lbrace$$\chi_{2940}(1,·)$, $\chi_{2940}(2659,·)$, $\chi_{2940}(2561,·)$, $\chi_{2940}(841,·)$, $\chi_{2940}(139,·)$, $\chi_{2940}(461,·)$, $\chi_{2940}(239,·)$, $\chi_{2940}(1681,·)$, $\chi_{2940}(659,·)$, $\chi_{2940}(1301,·)$, $\chi_{2940}(2521,·)$, $\chi_{2940}(1819,·)$, $\chi_{2940}(2141,·)$, $\chi_{2940}(1499,·)$, $\chi_{2940}(2339,·)$, $\chi_{2940}(421,·)$, $\chi_{2940}(41,·)$, $\chi_{2940}(2759,·)$, $\chi_{2940}(1261,·)$, $\chi_{2940}(559,·)$, $\chi_{2940}(881,·)$, $\chi_{2940}(979,·)$, $\chi_{2940}(2101,·)$, $\chi_{2940}(1399,·)$, $\chi_{2940}(1079,·)$, $\chi_{2940}(1721,·)$, $\chi_{2940}(1919,·)$, $\chi_{2940}(2239,·)$$\rbrace$
This is not a CM field.
This field has no CM subfields.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $\frac{1}{67}a^{22}-\frac{13}{67}a^{21}-\frac{25}{67}a^{19}-\frac{12}{67}a^{18}+\frac{20}{67}a^{17}-\frac{12}{67}a^{16}+\frac{31}{67}a^{15}+\frac{1}{67}a^{14}+\frac{10}{67}a^{13}+\frac{27}{67}a^{12}+\frac{8}{67}a^{11}-\frac{18}{67}a^{10}-\frac{20}{67}a^{9}-\frac{17}{67}a^{8}-\frac{3}{67}a^{7}+\frac{24}{67}a^{6}+\frac{26}{67}a^{5}+\frac{7}{67}a^{4}-\frac{22}{67}a^{3}-\frac{19}{67}a^{2}-\frac{12}{67}a+\frac{18}{67}$, $\frac{1}{67}a^{23}+\frac{32}{67}a^{21}-\frac{25}{67}a^{20}-\frac{2}{67}a^{19}-\frac{2}{67}a^{18}-\frac{20}{67}a^{17}+\frac{9}{67}a^{16}+\frac{2}{67}a^{15}+\frac{23}{67}a^{14}+\frac{23}{67}a^{13}+\frac{24}{67}a^{12}+\frac{19}{67}a^{11}+\frac{14}{67}a^{10}-\frac{9}{67}a^{9}-\frac{23}{67}a^{8}-\frac{15}{67}a^{7}+\frac{3}{67}a^{6}+\frac{10}{67}a^{5}+\frac{2}{67}a^{4}+\frac{30}{67}a^{3}+\frac{9}{67}a^{2}-\frac{4}{67}a+\frac{33}{67}$, $\frac{1}{67}a^{24}-\frac{11}{67}a^{21}-\frac{2}{67}a^{20}-\frac{6}{67}a^{19}+\frac{29}{67}a^{18}-\frac{28}{67}a^{17}-\frac{16}{67}a^{16}-\frac{31}{67}a^{15}-\frac{9}{67}a^{14}-\frac{28}{67}a^{13}+\frac{26}{67}a^{12}+\frac{26}{67}a^{11}+\frac{31}{67}a^{10}+\frac{14}{67}a^{9}-\frac{7}{67}a^{8}+\frac{32}{67}a^{7}-\frac{21}{67}a^{6}-\frac{26}{67}a^{5}+\frac{7}{67}a^{4}-\frac{24}{67}a^{3}+\frac{1}{67}a^{2}+\frac{15}{67}a+\frac{27}{67}$, $\frac{1}{67}a^{25}-\frac{11}{67}a^{21}-\frac{6}{67}a^{20}+\frac{22}{67}a^{19}-\frac{26}{67}a^{18}+\frac{3}{67}a^{17}-\frac{29}{67}a^{16}-\frac{3}{67}a^{15}-\frac{17}{67}a^{14}+\frac{2}{67}a^{13}-\frac{12}{67}a^{12}-\frac{15}{67}a^{11}+\frac{17}{67}a^{10}-\frac{26}{67}a^{9}-\frac{21}{67}a^{8}+\frac{13}{67}a^{7}-\frac{30}{67}a^{6}+\frac{25}{67}a^{5}-\frac{14}{67}a^{4}+\frac{27}{67}a^{3}+\frac{7}{67}a^{2}+\frac{29}{67}a-\frac{3}{67}$, $\frac{1}{48076319}a^{26}-\frac{332650}{48076319}a^{25}-\frac{317827}{48076319}a^{24}+\frac{161797}{48076319}a^{23}-\frac{94965}{48076319}a^{22}+\frac{5447216}{48076319}a^{21}-\frac{4574476}{48076319}a^{20}-\frac{69934}{48076319}a^{19}-\frac{6822267}{48076319}a^{18}+\frac{4368462}{48076319}a^{17}-\frac{2225245}{48076319}a^{16}-\frac{14868263}{48076319}a^{15}-\frac{15255835}{48076319}a^{14}+\frac{2377844}{48076319}a^{13}-\frac{9256310}{48076319}a^{12}+\frac{1828177}{48076319}a^{11}-\frac{18569321}{48076319}a^{10}-\frac{20407886}{48076319}a^{9}-\frac{11676962}{48076319}a^{8}-\frac{19813976}{48076319}a^{7}-\frac{6732373}{48076319}a^{6}+\frac{5006541}{48076319}a^{5}-\frac{15325999}{48076319}a^{4}-\frac{1140009}{48076319}a^{3}-\frac{12860553}{48076319}a^{2}-\frac{21397188}{48076319}a-\frac{16755945}{48076319}$, $\frac{1}{54\cdots 71}a^{27}+\frac{20\cdots 76}{54\cdots 71}a^{26}-\frac{12\cdots 90}{54\cdots 71}a^{25}-\frac{18\cdots 43}{54\cdots 71}a^{24}-\frac{37\cdots 76}{54\cdots 71}a^{23}+\frac{11\cdots 20}{54\cdots 71}a^{22}-\frac{15\cdots 11}{54\cdots 71}a^{21}+\frac{15\cdots 65}{54\cdots 71}a^{20}-\frac{85\cdots 21}{54\cdots 71}a^{19}+\frac{14\cdots 31}{54\cdots 71}a^{18}+\frac{57\cdots 79}{81\cdots 13}a^{17}+\frac{23\cdots 23}{54\cdots 71}a^{16}+\frac{13\cdots 70}{54\cdots 71}a^{15}-\frac{18\cdots 34}{54\cdots 71}a^{14}+\frac{12\cdots 75}{54\cdots 71}a^{13}-\frac{94\cdots 75}{54\cdots 71}a^{12}+\frac{22\cdots 82}{54\cdots 71}a^{11}-\frac{57\cdots 42}{54\cdots 71}a^{10}+\frac{69\cdots 16}{54\cdots 71}a^{9}-\frac{34\cdots 01}{17\cdots 41}a^{8}-\frac{17\cdots 42}{54\cdots 71}a^{7}-\frac{14\cdots 80}{54\cdots 71}a^{6}+\frac{30\cdots 31}{54\cdots 71}a^{5}+\frac{26\cdots 93}{54\cdots 71}a^{4}-\frac{22\cdots 28}{54\cdots 71}a^{3}-\frac{10\cdots 76}{54\cdots 71}a^{2}+\frac{23\cdots 63}{54\cdots 71}a+\frac{23\cdots 92}{83\cdots 93}$ Copy content Toggle raw display

Copy content comment:Integral basis
 
Copy content sage:K.integral_basis()
 
Copy content gp:K.zk
 
Copy content magma:IntegralBasis(K);
 
Copy content oscar:basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

Ideal class group:  not computed
Copy content comment:Class group
 
Copy content sage:K.class_group().invariants()
 
Copy content gp:K.clgp
 
Copy content magma:ClassGroup(K);
 
Copy content oscar:class_group(K)
 
Narrow class group:  not computed
Copy content comment:Narrow class group
 
Copy content sage:K.narrow_class_group().invariants()
 
Copy content gp:bnfnarrow(K)
 
Copy content magma:NarrowClassGroup(K);
 

Unit group

Copy content comment:Unit group
 
Copy content sage:UK = K.unit_group()
 
Copy content magma:UK, fUK := UnitGroup(K);
 
Copy content oscar:UK, fUK = unit_group(OK)
 
Rank:  $27$
Copy content comment:Unit rank
 
Copy content sage:UK.rank()
 
Copy content gp:K.fu
 
Copy content magma:UnitRank(K);
 
Copy content oscar:rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
Copy content comment:Generator for roots of unity
 
Copy content sage:UK.torsion_generator()
 
Copy content gp:K.tu[2]
 
Copy content magma:K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
Copy content oscar:torsion_units_generator(OK)
 
Fundamental units:  not computed
Copy content comment:Fundamental units
 
Copy content sage:UK.fundamental_units()
 
Copy content gp:K.fu
 
Copy content magma:[K|fUK(g): g in Generators(UK)];
 
Copy content oscar:[K(fUK(a)) for a in gens(UK)]
 
Regulator:  not computed
Copy content comment:Regulator
 
Copy content sage:K.regulator()
 
Copy content gp:K.reg
 
Copy content magma:Regulator(K);
 
Copy content oscar:regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr = \mathstrut &\frac{2^{28}\cdot(2\pi)^{0}\cdot R \cdot h}{2\cdot\sqrt{14093520972294144372749526040992276772190449136895590400000000000000}}\cr\mathstrut & \text{ some values not computed } \end{aligned}\]

Copy content comment:Analytic class number formula
 
Copy content sage:# self-contained SageMath code snippet to compute the analytic class number formula x = polygen(QQ); K.<a> = NumberField(x^28 - 259*x^26 - 126*x^25 + 27692*x^24 + 25270*x^23 - 1593004*x^22 - 2067704*x^21 + 54012987*x^20 + 89930554*x^19 - 1114299515*x^18 - 2272374468*x^17 + 13932913589*x^16 + 34374275292*x^15 - 100947318765*x^14 - 311107593972*x^13 + 366821491603*x^12 + 1643423997740*x^11 - 232371293847*x^10 - 4740100579774*x^9 - 2545586025094*x^8 + 6218077995010*x^7 + 7007137937989*x^6 - 1338107929410*x^5 - 5058056304826*x^4 - 2068468489948*x^3 + 218914939523*x^2 + 271046334062*x + 38174136301) DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent() hK = K.class_number(); wK = K.unit_group().torsion_generator().order(); 2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
Copy content gp:\\ self-contained Pari/GP code snippet to compute the analytic class number formula K = bnfinit(x^28 - 259*x^26 - 126*x^25 + 27692*x^24 + 25270*x^23 - 1593004*x^22 - 2067704*x^21 + 54012987*x^20 + 89930554*x^19 - 1114299515*x^18 - 2272374468*x^17 + 13932913589*x^16 + 34374275292*x^15 - 100947318765*x^14 - 311107593972*x^13 + 366821491603*x^12 + 1643423997740*x^11 - 232371293847*x^10 - 4740100579774*x^9 - 2545586025094*x^8 + 6218077995010*x^7 + 7007137937989*x^6 - 1338107929410*x^5 - 5058056304826*x^4 - 2068468489948*x^3 + 218914939523*x^2 + 271046334062*x + 38174136301, 1); [polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
Copy content magma:/* self-contained Magma code snippet to compute the analytic class number formula */ Qx<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^28 - 259*x^26 - 126*x^25 + 27692*x^24 + 25270*x^23 - 1593004*x^22 - 2067704*x^21 + 54012987*x^20 + 89930554*x^19 - 1114299515*x^18 - 2272374468*x^17 + 13932913589*x^16 + 34374275292*x^15 - 100947318765*x^14 - 311107593972*x^13 + 366821491603*x^12 + 1643423997740*x^11 - 232371293847*x^10 - 4740100579774*x^9 - 2545586025094*x^8 + 6218077995010*x^7 + 7007137937989*x^6 - 1338107929410*x^5 - 5058056304826*x^4 - 2068468489948*x^3 + 218914939523*x^2 + 271046334062*x + 38174136301); OK := Integers(K); DK := Discriminant(OK); UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK); r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK); hK := #clK; wK := #TorsionSubgroup(UK); 2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
Copy content oscar:# self-contained Oscar code snippet to compute the analytic class number formula Qx, x = polynomial_ring(QQ); K, a = number_field(x^28 - 259*x^26 - 126*x^25 + 27692*x^24 + 25270*x^23 - 1593004*x^22 - 2067704*x^21 + 54012987*x^20 + 89930554*x^19 - 1114299515*x^18 - 2272374468*x^17 + 13932913589*x^16 + 34374275292*x^15 - 100947318765*x^14 - 311107593972*x^13 + 366821491603*x^12 + 1643423997740*x^11 - 232371293847*x^10 - 4740100579774*x^9 - 2545586025094*x^8 + 6218077995010*x^7 + 7007137937989*x^6 - 1338107929410*x^5 - 5058056304826*x^4 - 2068468489948*x^3 + 218914939523*x^2 + 271046334062*x + 38174136301); OK = ring_of_integers(K); DK = discriminant(OK); UK, fUK = unit_group(OK); clK, fclK = class_group(OK); r1,r2 = signature(K); RK = regulator(K); RR = parent(RK); hK = order(clK); wK = torsion_units_order(K); 2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_2\times C_{14}$ (as 28T2):

Copy content comment:Galois group
 
Copy content sage:K.galois_group(type='pari')
 
Copy content gp:polgalois(K.pol)
 
Copy content magma:G = GaloisGroup(K);
 
Copy content oscar:G, Gtx = galois_group(K); degree(K) > 1 ? (G, transitive_group_identification(G)) : (G, nothing)
 
An abelian group of order 28
The 28 conjugacy class representatives for $C_2\times C_{14}$
Character table for $C_2\times C_{14}$

Intermediate fields

\(\Q(\sqrt{15}) \), \(\Q(\sqrt{35}) \), \(\Q(\sqrt{21}) \), \(\Q(\sqrt{15}, \sqrt{21})\), 7.7.13841287201.1, 14.14.536304835877502397817583360000000.1, 14.14.1716567833169875073032960000000.1, 14.14.2932917071205091238064909.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Copy content comment:Intermediate fields
 
Copy content sage:K.subfields()[1:-1]
 
Copy content gp:L = nfsubfields(K); L[2..length(L)]
 
Copy content magma:L := Subfields(K); L[2..#L];
 
Copy content oscar:subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R R R R ${\href{/padicField/11.14.0.1}{14} }^{2}$ ${\href{/padicField/13.14.0.1}{14} }^{2}$ ${\href{/padicField/17.7.0.1}{7} }^{4}$ ${\href{/padicField/19.2.0.1}{2} }^{14}$ ${\href{/padicField/23.14.0.1}{14} }^{2}$ ${\href{/padicField/29.14.0.1}{14} }^{2}$ ${\href{/padicField/31.2.0.1}{2} }^{14}$ ${\href{/padicField/37.14.0.1}{14} }^{2}$ ${\href{/padicField/41.14.0.1}{14} }^{2}$ ${\href{/padicField/43.7.0.1}{7} }^{4}$ ${\href{/padicField/47.14.0.1}{14} }^{2}$ ${\href{/padicField/53.14.0.1}{14} }^{2}$ ${\href{/padicField/59.7.0.1}{7} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

Copy content comment:Frobenius cycle types
 
Copy content sage:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Sage: p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
Copy content gp:\\ to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Pari: p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
Copy content magma:// to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Magma: p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
Copy content oscar:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Oscar: p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display Deg $28$$2$$14$$28$
\(3\) Copy content Toggle raw display Deg $28$$2$$14$$14$
\(5\) Copy content Toggle raw display 5.7.2.7a1.1$x^{14} + 6 x^{8} + 6 x^{7} + 9 x^{2} + 23 x + 9$$2$$7$$7$$C_{14}$$$[\ ]_{2}^{7}$$
5.7.2.7a1.1$x^{14} + 6 x^{8} + 6 x^{7} + 9 x^{2} + 23 x + 9$$2$$7$$7$$C_{14}$$$[\ ]_{2}^{7}$$
\(7\) Copy content Toggle raw display 7.1.14.25a5.1$x^{14} + 42 x^{12} + 7$$14$$1$$25$$C_{14}$$$[2]_{2}$$
7.1.14.25a5.1$x^{14} + 42 x^{12} + 7$$14$$1$$25$$C_{14}$$$[2]_{2}$$

Spectrum of ring of integers

(0)(0)(2)(3)(5)(7)(11)(13)(17)(19)(23)(29)(31)(37)(41)(43)(47)(53)(59)