Properties

Label 28.28.1407829094...8125.1
Degree $28$
Signature $[28, 0]$
Discriminant $5^{21}\cdot 43^{26}$
Root discriminant $109.91$
Ramified primes $5, 43$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group $C_{28}$ (as 28T1)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-2789, -84867, -732425, -990770, 5608146, 11875118, -17209192, -43876845, 31487031, 83155937, -41957881, -91572889, 41941965, 60403709, -28489796, -23840492, 11981008, 5705690, -3079355, -833426, 486583, 73335, -46935, -3722, 2666, 98, -81, -1, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^28 - x^27 - 81*x^26 + 98*x^25 + 2666*x^24 - 3722*x^23 - 46935*x^22 + 73335*x^21 + 486583*x^20 - 833426*x^19 - 3079355*x^18 + 5705690*x^17 + 11981008*x^16 - 23840492*x^15 - 28489796*x^14 + 60403709*x^13 + 41941965*x^12 - 91572889*x^11 - 41957881*x^10 + 83155937*x^9 + 31487031*x^8 - 43876845*x^7 - 17209192*x^6 + 11875118*x^5 + 5608146*x^4 - 990770*x^3 - 732425*x^2 - 84867*x - 2789)
 
gp: K = bnfinit(x^28 - x^27 - 81*x^26 + 98*x^25 + 2666*x^24 - 3722*x^23 - 46935*x^22 + 73335*x^21 + 486583*x^20 - 833426*x^19 - 3079355*x^18 + 5705690*x^17 + 11981008*x^16 - 23840492*x^15 - 28489796*x^14 + 60403709*x^13 + 41941965*x^12 - 91572889*x^11 - 41957881*x^10 + 83155937*x^9 + 31487031*x^8 - 43876845*x^7 - 17209192*x^6 + 11875118*x^5 + 5608146*x^4 - 990770*x^3 - 732425*x^2 - 84867*x - 2789, 1)
 

Normalized defining polynomial

\( x^{28} - x^{27} - 81 x^{26} + 98 x^{25} + 2666 x^{24} - 3722 x^{23} - 46935 x^{22} + 73335 x^{21} + 486583 x^{20} - 833426 x^{19} - 3079355 x^{18} + 5705690 x^{17} + 11981008 x^{16} - 23840492 x^{15} - 28489796 x^{14} + 60403709 x^{13} + 41941965 x^{12} - 91572889 x^{11} - 41957881 x^{10} + 83155937 x^{9} + 31487031 x^{8} - 43876845 x^{7} - 17209192 x^{6} + 11875118 x^{5} + 5608146 x^{4} - 990770 x^{3} - 732425 x^{2} - 84867 x - 2789 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $28$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[28, 0]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(1407829094312471215113334241722636006626629352569580078125=5^{21}\cdot 43^{26}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $109.91$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $5, 43$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(215=5\cdot 43\)
Dirichlet character group:    $\lbrace$$\chi_{215}(128,·)$, $\chi_{215}(1,·)$, $\chi_{215}(2,·)$, $\chi_{215}(4,·)$, $\chi_{215}(118,·)$, $\chi_{215}(8,·)$, $\chi_{215}(137,·)$, $\chi_{215}(11,·)$, $\chi_{215}(64,·)$, $\chi_{215}(16,·)$, $\chi_{215}(82,·)$, $\chi_{215}(84,·)$, $\chi_{215}(21,·)$, $\chi_{215}(22,·)$, $\chi_{215}(88,·)$, $\chi_{215}(27,·)$, $\chi_{215}(32,·)$, $\chi_{215}(164,·)$, $\chi_{215}(113,·)$, $\chi_{215}(168,·)$, $\chi_{215}(41,·)$, $\chi_{215}(42,·)$, $\chi_{215}(44,·)$, $\chi_{215}(176,·)$, $\chi_{215}(108,·)$, $\chi_{215}(54,·)$, $\chi_{215}(121,·)$, $\chi_{215}(59,·)$$\rbrace$
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $\frac{1}{4909} a^{26} - \frac{2068}{4909} a^{25} + \frac{847}{4909} a^{24} + \frac{415}{4909} a^{23} + \frac{168}{4909} a^{22} - \frac{176}{4909} a^{21} - \frac{1028}{4909} a^{20} + \frac{527}{4909} a^{19} + \frac{751}{4909} a^{18} - \frac{1815}{4909} a^{17} - \frac{529}{4909} a^{16} - \frac{2277}{4909} a^{15} - \frac{500}{4909} a^{14} - \frac{614}{4909} a^{13} - \frac{318}{4909} a^{12} - \frac{2214}{4909} a^{11} + \frac{1854}{4909} a^{10} + \frac{922}{4909} a^{9} - \frac{419}{4909} a^{8} + \frac{1944}{4909} a^{7} + \frac{2039}{4909} a^{6} + \frac{1875}{4909} a^{5} - \frac{1526}{4909} a^{4} - \frac{527}{4909} a^{3} + \frac{497}{4909} a^{2} + \frac{1376}{4909} a + \frac{685}{4909}$, $\frac{1}{2104023369815633366612853528833610649076543281388238374746612688940071157871109} a^{27} - \frac{178250504533671837709504137722859146993931017501743981028303142255742122792}{2104023369815633366612853528833610649076543281388238374746612688940071157871109} a^{26} + \frac{534181213426548313090013153653604339227698606955762050589343483057277812517228}{2104023369815633366612853528833610649076543281388238374746612688940071157871109} a^{25} - \frac{300986939562654283578513824593893782717518597886802591986487109469311224839029}{2104023369815633366612853528833610649076543281388238374746612688940071157871109} a^{24} + \frac{979941955814695164808251945894221705477171755200425295202625299966047595090128}{2104023369815633366612853528833610649076543281388238374746612688940071157871109} a^{23} + \frac{224412586851889629268967691981266264963068358436958016788050625728360250862318}{2104023369815633366612853528833610649076543281388238374746612688940071157871109} a^{22} + \frac{430814372416696071614318413100722346758176390215928523344157593752393975652462}{2104023369815633366612853528833610649076543281388238374746612688940071157871109} a^{21} - \frac{418660941176816793742523994119788647945193224948744899364514281086869459874871}{2104023369815633366612853528833610649076543281388238374746612688940071157871109} a^{20} + \frac{343918568410205834778529547777468559584281885535865324953302838219814334928103}{2104023369815633366612853528833610649076543281388238374746612688940071157871109} a^{19} + \frac{782136340597875027526731084615906485380634728596484748964677228217160232486260}{2104023369815633366612853528833610649076543281388238374746612688940071157871109} a^{18} - \frac{856727707012204165113842727675905599561715861695254653372955346573065061485939}{2104023369815633366612853528833610649076543281388238374746612688940071157871109} a^{17} + \frac{660671221611598987351944282798683681191263633741338214333847874048893305582648}{2104023369815633366612853528833610649076543281388238374746612688940071157871109} a^{16} + \frac{455160638171690254210774138348587344588728583434302264903724680472968326837741}{2104023369815633366612853528833610649076543281388238374746612688940071157871109} a^{15} - \frac{90610167601967416352711672588443868393514827122330316071963521734842705823981}{2104023369815633366612853528833610649076543281388238374746612688940071157871109} a^{14} + \frac{555932762317086547658793954765074373990958207023547037395291296267699955755601}{2104023369815633366612853528833610649076543281388238374746612688940071157871109} a^{13} - \frac{199164162618316614758918885034829242354508309155976197268680908403351937887739}{2104023369815633366612853528833610649076543281388238374746612688940071157871109} a^{12} - \frac{145264376012862702635613265250024221039261880271882100001960998158745928263534}{2104023369815633366612853528833610649076543281388238374746612688940071157871109} a^{11} + \frac{747362586746318882279872921134514689278412663908459323774318188346376009407243}{2104023369815633366612853528833610649076543281388238374746612688940071157871109} a^{10} - \frac{310921816276285169253505947341846456085193862127893741363495384227629374209163}{2104023369815633366612853528833610649076543281388238374746612688940071157871109} a^{9} + \frac{246245307842456289793364116692894396317847439419234272220320706532510328914107}{2104023369815633366612853528833610649076543281388238374746612688940071157871109} a^{8} + \frac{737495521414870850276387267842167742964613959482855744157946664284520178325850}{2104023369815633366612853528833610649076543281388238374746612688940071157871109} a^{7} + \frac{532797428130991501300413691878775248353882846933258162650950532915685167367648}{2104023369815633366612853528833610649076543281388238374746612688940071157871109} a^{6} - \frac{870617789139422205031993958297180608731094774347611277690560214061888512781668}{2104023369815633366612853528833610649076543281388238374746612688940071157871109} a^{5} + \frac{249878072939834763641850541801095400697350769587695591009769197139301068622904}{2104023369815633366612853528833610649076543281388238374746612688940071157871109} a^{4} + \frac{381937979882263252673234807477956683087912677137361477578200420338951159494586}{2104023369815633366612853528833610649076543281388238374746612688940071157871109} a^{3} + \frac{947123760836823857695614415197500753773894007400716351993878641802554839371366}{2104023369815633366612853528833610649076543281388238374746612688940071157871109} a^{2} - \frac{159297108187883193358964127714274569382299015321215826274649098144285022441265}{2104023369815633366612853528833610649076543281388238374746612688940071157871109} a - \frac{110069391305116738138877936850985627307622698700821676627596381128186857656}{754400634569965351958714065555256597015612506772405297506852882373636126881}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $27$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 34667735947885390000 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_{28}$ (as 28T1):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A cyclic group of order 28
The 28 conjugacy class representatives for $C_{28}$
Character table for $C_{28}$ is not computed

Intermediate fields

\(\Q(\sqrt{5}) \), 4.4.231125.1, 7.7.6321363049.1, 14.14.3121846156036138781328125.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type $28$ $28$ R ${\href{/LocalNumberField/7.4.0.1}{4} }^{7}$ ${\href{/LocalNumberField/11.7.0.1}{7} }^{4}$ $28$ $28$ ${\href{/LocalNumberField/19.7.0.1}{7} }^{4}$ $28$ ${\href{/LocalNumberField/29.7.0.1}{7} }^{4}$ ${\href{/LocalNumberField/31.7.0.1}{7} }^{4}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{7}$ ${\href{/LocalNumberField/41.7.0.1}{7} }^{4}$ R $28$ $28$ ${\href{/LocalNumberField/59.14.0.1}{14} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
5Data not computed
43Data not computed