Normalized defining polynomial
\( x^{28} - 2 x^{27} - 67 x^{26} + 128 x^{25} + 1915 x^{24} - 3470 x^{23} - 30502 x^{22} + 51962 x^{21} + 296883 x^{20} - 470232 x^{19} - 1822856 x^{18} + 2646496 x^{17} + 7045255 x^{16} - 9204326 x^{15} - 16632140 x^{14} + 19086334 x^{13} + 22549873 x^{12} - 22027400 x^{11} - 15790909 x^{10} + 12642698 x^{9} + 4786431 x^{8} - 3052488 x^{7} - 481394 x^{6} + 260140 x^{5} + 15255 x^{4} - 7818 x^{3} - 67 x^{2} + 56 x + 1 \)
Invariants
| Degree: | $28$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[28, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(135171579942192030712001098144632895138136441638354944=2^{28}\cdot 3^{14}\cdot 29^{26}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $78.98$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(348=2^{2}\cdot 3\cdot 29\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{348}(1,·)$, $\chi_{348}(323,·)$, $\chi_{348}(227,·)$, $\chi_{348}(325,·)$, $\chi_{348}(71,·)$, $\chi_{348}(265,·)$, $\chi_{348}(241,·)$, $\chi_{348}(13,·)$, $\chi_{348}(335,·)$, $\chi_{348}(83,·)$, $\chi_{348}(277,·)$, $\chi_{348}(23,·)$, $\chi_{348}(25,·)$, $\chi_{348}(347,·)$, $\chi_{348}(107,·)$, $\chi_{348}(289,·)$, $\chi_{348}(35,·)$, $\chi_{348}(167,·)$, $\chi_{348}(169,·)$, $\chi_{348}(299,·)$, $\chi_{348}(109,·)$, $\chi_{348}(239,·)$, $\chi_{348}(49,·)$, $\chi_{348}(179,·)$, $\chi_{348}(181,·)$, $\chi_{348}(121,·)$, $\chi_{348}(313,·)$, $\chi_{348}(59,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $\frac{1}{59} a^{25} - \frac{28}{59} a^{24} + \frac{8}{59} a^{23} - \frac{9}{59} a^{22} + \frac{20}{59} a^{21} + \frac{25}{59} a^{20} - \frac{6}{59} a^{19} - \frac{14}{59} a^{18} + \frac{7}{59} a^{17} + \frac{23}{59} a^{15} - \frac{8}{59} a^{14} + \frac{4}{59} a^{13} + \frac{16}{59} a^{12} - \frac{26}{59} a^{11} - \frac{13}{59} a^{10} - \frac{23}{59} a^{9} + \frac{19}{59} a^{8} - \frac{18}{59} a^{7} - \frac{21}{59} a^{6} + \frac{13}{59} a^{5} + \frac{7}{59} a^{4} + \frac{24}{59} a^{3} + \frac{4}{59} a^{2} + \frac{18}{59} a - \frac{23}{59}$, $\frac{1}{59} a^{26} - \frac{9}{59} a^{24} - \frac{21}{59} a^{23} + \frac{4}{59} a^{22} - \frac{5}{59} a^{21} - \frac{14}{59} a^{20} - \frac{5}{59} a^{19} + \frac{28}{59} a^{18} + \frac{19}{59} a^{17} + \frac{23}{59} a^{16} - \frac{13}{59} a^{15} + \frac{16}{59} a^{14} + \frac{10}{59} a^{13} + \frac{9}{59} a^{12} + \frac{26}{59} a^{11} + \frac{26}{59} a^{10} + \frac{24}{59} a^{9} - \frac{17}{59} a^{8} + \frac{6}{59} a^{7} + \frac{15}{59} a^{6} + \frac{17}{59} a^{5} - \frac{16}{59} a^{4} + \frac{27}{59} a^{3} + \frac{12}{59} a^{2} + \frac{9}{59} a + \frac{5}{59}$, $\frac{1}{24715607842148797770477297519178927203767095015088312725258568789807707} a^{27} - \frac{9183407243623464517650231709450524925202101371996875605186354030363}{24715607842148797770477297519178927203767095015088312725258568789807707} a^{26} - \frac{195880563754888592523937369869671912657286468001334848193811615122407}{24715607842148797770477297519178927203767095015088312725258568789807707} a^{25} - \frac{7634036178310197274710263889281321634940411279688711247328650704215361}{24715607842148797770477297519178927203767095015088312725258568789807707} a^{24} + \frac{4563594055668292409095766192922410165773002660040580708640323571164881}{24715607842148797770477297519178927203767095015088312725258568789807707} a^{23} - \frac{10406220734721690917614302579881477739151668661304898706004452148339312}{24715607842148797770477297519178927203767095015088312725258568789807707} a^{22} - \frac{5954999660841970472950179445136030709728725328012763149596695120414596}{24715607842148797770477297519178927203767095015088312725258568789807707} a^{21} + \frac{4342659008983754638410783473913826237046508719477374102804765698608828}{24715607842148797770477297519178927203767095015088312725258568789807707} a^{20} - \frac{8033318575676300138058403706565270149341910289070523016386138913899000}{24715607842148797770477297519178927203767095015088312725258568789807707} a^{19} - \frac{10245424881955013443433928112613720715853587366102380496737737377745203}{24715607842148797770477297519178927203767095015088312725258568789807707} a^{18} + \frac{2497157168228148789794175243014132342757862348652801226945337278830552}{24715607842148797770477297519178927203767095015088312725258568789807707} a^{17} + \frac{9438512473365773109807874125928651305035569372837972781519471463473196}{24715607842148797770477297519178927203767095015088312725258568789807707} a^{16} + \frac{155213998932922828086217214647059084270677932658810845013634052763840}{602819703467043848060421890711681151311392561343617383542891921702627} a^{15} - \frac{140368917726243004831970915711460431004979501827919204420289955998712}{418908607494047419838598263036930969555374491781157842800992691352673} a^{14} + \frac{4497119497785264998402141637046936678991325396066501916021128764042906}{24715607842148797770477297519178927203767095015088312725258568789807707} a^{13} - \frac{3198464781631911330688715742264258001869167262706372056114747502223000}{24715607842148797770477297519178927203767095015088312725258568789807707} a^{12} + \frac{5496571902735466352496100446631380348486677458055198653788551338189756}{24715607842148797770477297519178927203767095015088312725258568789807707} a^{11} - \frac{2124333419470539401940133252461760091120305718062260430379501886192616}{24715607842148797770477297519178927203767095015088312725258568789807707} a^{10} + \frac{1484606763366516203974288947560296384932279840824213062974960133681871}{24715607842148797770477297519178927203767095015088312725258568789807707} a^{9} - \frac{2137528965141030734393371023365508372598008061689583670397618293073670}{24715607842148797770477297519178927203767095015088312725258568789807707} a^{8} - \frac{5975806751722723493333498150117978753596175703807108415769602225342954}{24715607842148797770477297519178927203767095015088312725258568789807707} a^{7} - \frac{2017826075936109774941441880427412701884453438489241107023628788412288}{24715607842148797770477297519178927203767095015088312725258568789807707} a^{6} + \frac{4233397537486293133038093129664072420046179526950493292938647839291820}{24715607842148797770477297519178927203767095015088312725258568789807707} a^{5} + \frac{2315813288890254736961975419281358395163991235706453730329031104716014}{24715607842148797770477297519178927203767095015088312725258568789807707} a^{4} + \frac{115792572754090150550730801133481544723241539992178577879735773863128}{418908607494047419838598263036930969555374491781157842800992691352673} a^{3} + \frac{4014089541427069965271046800890481294839600660790135192689600795024825}{24715607842148797770477297519178927203767095015088312725258568789807707} a^{2} + \frac{6945109601906773901662527199712329404743482609748886017502325200142086}{24715607842148797770477297519178927203767095015088312725258568789807707} a + \frac{8541638716734415205829051616116469058024631450845387761284674667131134}{24715607842148797770477297519178927203767095015088312725258568789807707}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $27$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 442900936905773100 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{14}$ (as 28T2):
| An abelian group of order 28 |
| The 28 conjugacy class representatives for $C_2\times C_{14}$ |
| Character table for $C_2\times C_{14}$ is not computed |
Intermediate fields
| \(\Q(\sqrt{3}) \), \(\Q(\sqrt{29}) \), \(\Q(\sqrt{87}) \), \(\Q(\sqrt{3}, \sqrt{29})\), 7.7.594823321.1, 14.14.12677823379379991227056128.1, \(\Q(\zeta_{29})^+\), 14.14.367656878002019745584627712.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/7.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/11.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/13.7.0.1}{7} }^{4}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{14}$ | ${\href{/LocalNumberField/19.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/23.7.0.1}{7} }^{4}$ | R | ${\href{/LocalNumberField/31.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/37.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{14}$ | ${\href{/LocalNumberField/43.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/47.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/53.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/59.1.0.1}{1} }^{28}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| 29 | Data not computed | ||||||