Normalized defining polynomial
\( x^{28} - 145 x^{26} + 8555 x^{24} - 272600 x^{22} + 5210575 x^{20} - 62582000 x^{18} + 480954125 x^{16} - 2365022500 x^{14} + 7347186250 x^{12} - 14139312500 x^{10} + 16449434375 x^{8} - 11274656250 x^{6} + 4349546875 x^{4} - 854140625 x^{2} + 65703125 \)
Invariants
| Degree: | $28$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[28, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(13475904202904384157772520869472715740288000000000000000000000=2^{28}\cdot 5^{21}\cdot 29^{26}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $152.47$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(580=2^{2}\cdot 5\cdot 29\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{580}(1,·)$, $\chi_{580}(323,·)$, $\chi_{580}(81,·)$, $\chi_{580}(267,·)$, $\chi_{580}(141,·)$, $\chi_{580}(207,·)$, $\chi_{580}(527,·)$, $\chi_{580}(401,·)$, $\chi_{580}(67,·)$, $\chi_{580}(529,·)$, $\chi_{580}(463,·)$, $\chi_{580}(281,·)$, $\chi_{580}(283,·)$, $\chi_{580}(349,·)$, $\chi_{580}(161,·)$, $\chi_{580}(347,·)$, $\chi_{580}(167,·)$, $\chi_{580}(169,·)$, $\chi_{580}(429,·)$, $\chi_{580}(303,·)$, $\chi_{580}(489,·)$, $\chi_{580}(49,·)$, $\chi_{580}(383,·)$, $\chi_{580}(181,·)$, $\chi_{580}(183,·)$, $\chi_{580}(187,·)$, $\chi_{580}(509,·)$, $\chi_{580}(63,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{5} a^{4}$, $\frac{1}{5} a^{5}$, $\frac{1}{5} a^{6}$, $\frac{1}{5} a^{7}$, $\frac{1}{25} a^{8}$, $\frac{1}{25} a^{9}$, $\frac{1}{25} a^{10}$, $\frac{1}{25} a^{11}$, $\frac{1}{125} a^{12}$, $\frac{1}{125} a^{13}$, $\frac{1}{3625} a^{14}$, $\frac{1}{3625} a^{15}$, $\frac{1}{18125} a^{16}$, $\frac{1}{18125} a^{17}$, $\frac{1}{743125} a^{18} - \frac{16}{743125} a^{16} - \frac{11}{148625} a^{14} - \frac{2}{5125} a^{12} + \frac{16}{1025} a^{10} - \frac{13}{1025} a^{8} + \frac{7}{205} a^{6} - \frac{12}{205} a^{4} + \frac{16}{41} a^{2} + \frac{5}{41}$, $\frac{1}{743125} a^{19} - \frac{16}{743125} a^{17} - \frac{11}{148625} a^{15} - \frac{2}{5125} a^{13} + \frac{16}{1025} a^{11} - \frac{13}{1025} a^{9} + \frac{7}{205} a^{7} - \frac{12}{205} a^{5} + \frac{16}{41} a^{3} + \frac{5}{41} a$, $\frac{1}{63165625} a^{20} + \frac{1}{2526625} a^{18} + \frac{9}{743125} a^{16} - \frac{28}{2526625} a^{14} + \frac{262}{87125} a^{12} - \frac{19}{17425} a^{10} - \frac{2}{1025} a^{8} + \frac{96}{3485} a^{6} + \frac{139}{3485} a^{4} + \frac{165}{697} a^{2} - \frac{2}{17}$, $\frac{1}{63165625} a^{21} + \frac{1}{2526625} a^{19} + \frac{9}{743125} a^{17} - \frac{28}{2526625} a^{15} + \frac{262}{87125} a^{13} - \frac{19}{17425} a^{11} - \frac{2}{1025} a^{9} + \frac{96}{3485} a^{7} + \frac{139}{3485} a^{5} + \frac{165}{697} a^{3} - \frac{2}{17} a$, $\frac{1}{63165625} a^{22} - \frac{6}{12633125} a^{18} + \frac{64}{12633125} a^{16} + \frac{308}{2526625} a^{14} - \frac{304}{87125} a^{12} - \frac{103}{17425} a^{10} - \frac{319}{17425} a^{8} + \frac{17}{205} a^{6} - \frac{151}{3485} a^{4} + \frac{128}{697} a^{2} - \frac{211}{697}$, $\frac{1}{63165625} a^{23} - \frac{6}{12633125} a^{19} + \frac{64}{12633125} a^{17} + \frac{308}{2526625} a^{15} - \frac{304}{87125} a^{13} - \frac{103}{17425} a^{11} - \frac{319}{17425} a^{9} + \frac{17}{205} a^{7} - \frac{151}{3485} a^{5} + \frac{128}{697} a^{3} - \frac{211}{697} a$, $\frac{1}{18633859375} a^{24} + \frac{16}{3726771875} a^{22} - \frac{18}{3726771875} a^{20} - \frac{218}{745354375} a^{18} + \frac{11566}{745354375} a^{16} + \frac{14221}{149070875} a^{14} - \frac{9216}{5140375} a^{12} + \frac{2921}{205615} a^{10} + \frac{7578}{1028075} a^{8} - \frac{288}{205615} a^{6} - \frac{131}{205615} a^{4} + \frac{6496}{41123} a^{2} + \frac{9780}{41123}$, $\frac{1}{18633859375} a^{25} + \frac{16}{3726771875} a^{23} - \frac{18}{3726771875} a^{21} - \frac{218}{745354375} a^{19} + \frac{11566}{745354375} a^{17} + \frac{14221}{149070875} a^{15} - \frac{9216}{5140375} a^{13} + \frac{2921}{205615} a^{11} + \frac{7578}{1028075} a^{9} - \frac{288}{205615} a^{7} - \frac{131}{205615} a^{5} + \frac{6496}{41123} a^{3} + \frac{9780}{41123} a$, $\frac{1}{32147860914265625} a^{26} + \frac{26321}{1108546928078125} a^{24} + \frac{32231}{13041728565625} a^{22} - \frac{2139}{751557239375} a^{20} + \frac{27720789}{44341877123125} a^{18} + \frac{18266907}{1081509198125} a^{16} + \frac{776646232}{8868375424625} a^{14} - \frac{26442842861}{8868375424625} a^{12} + \frac{1089502891}{61161209825} a^{10} - \frac{738564808}{61161209825} a^{8} + \frac{804084111}{12232241965} a^{6} + \frac{232028072}{12232241965} a^{4} - \frac{277708371}{2446448393} a^{2} - \frac{1195024387}{2446448393}$, $\frac{1}{32147860914265625} a^{27} + \frac{26321}{1108546928078125} a^{25} + \frac{32231}{13041728565625} a^{23} - \frac{2139}{751557239375} a^{21} + \frac{27720789}{44341877123125} a^{19} + \frac{18266907}{1081509198125} a^{17} + \frac{776646232}{8868375424625} a^{15} - \frac{26442842861}{8868375424625} a^{13} + \frac{1089502891}{61161209825} a^{11} - \frac{738564808}{61161209825} a^{9} + \frac{804084111}{12232241965} a^{7} + \frac{232028072}{12232241965} a^{5} - \frac{277708371}{2446448393} a^{3} - \frac{1195024387}{2446448393} a$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $27$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1362591492474554000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 28 |
| The 28 conjugacy class representatives for $C_{28}$ |
| Character table for $C_{28}$ is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.4.1682000.2, 7.7.594823321.1, 14.14.27641779937927268828125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $28$ | R | $28$ | ${\href{/LocalNumberField/11.7.0.1}{7} }^{4}$ | $28$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{7}$ | ${\href{/LocalNumberField/19.14.0.1}{14} }^{2}$ | $28$ | R | ${\href{/LocalNumberField/31.7.0.1}{7} }^{4}$ | $28$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{14}$ | $28$ | $28$ | $28$ | ${\href{/LocalNumberField/59.1.0.1}{1} }^{28}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| $29$ | 29.14.13.11 | $x^{14} + 3712$ | $14$ | $1$ | $13$ | $C_{14}$ | $[\ ]_{14}$ |
| 29.14.13.11 | $x^{14} + 3712$ | $14$ | $1$ | $13$ | $C_{14}$ | $[\ ]_{14}$ | |