Normalized defining polynomial
\( x^{28} - x^{27} - 260 x^{26} + 260 x^{25} + 30277 x^{24} - 30277 x^{23} - 2083823 x^{22} + 2083823 x^{21} + 94192291 x^{20} - 94192291 x^{19} - 2938505300 x^{18} + 2938505300 x^{17} + 64703836621 x^{16} - 64703836621 x^{15} - 1010545858331 x^{14} + 1010545858331 x^{13} + 11086013209879 x^{12} - 11086013209879 x^{11} - 83267147522159 x^{10} + 83267147522159 x^{9} + 408362479450039 x^{8} - 408362479450039 x^{7} - 1200607208822609 x^{6} + 1200607208822609 x^{5} + 1780718978270827 x^{4} - 1780718978270827 x^{3} - 799274837483108 x^{2} + 799274837483108 x - 135847856289239 \)
Invariants
| Degree: | $28$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[28, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(12638588217709750986410836410788356243350663111637823486328125=5^{14}\cdot 7^{14}\cdot 29^{27}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $152.13$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 7, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1015=5\cdot 7\cdot 29\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1015}(1,·)$, $\chi_{1015}(386,·)$, $\chi_{1015}(71,·)$, $\chi_{1015}(69,·)$, $\chi_{1015}(454,·)$, $\chi_{1015}(769,·)$, $\chi_{1015}(524,·)$, $\chi_{1015}(909,·)$, $\chi_{1015}(526,·)$, $\chi_{1015}(141,·)$, $\chi_{1015}(594,·)$, $\chi_{1015}(596,·)$, $\chi_{1015}(981,·)$, $\chi_{1015}(279,·)$, $\chi_{1015}(664,·)$, $\chi_{1015}(281,·)$, $\chi_{1015}(666,·)$, $\chi_{1015}(804,·)$, $\chi_{1015}(806,·)$, $\chi_{1015}(104,·)$, $\chi_{1015}(839,·)$, $\chi_{1015}(876,·)$, $\chi_{1015}(559,·)$, $\chi_{1015}(244,·)$, $\chi_{1015}(631,·)$, $\chi_{1015}(699,·)$, $\chi_{1015}(701,·)$, $\chi_{1015}(36,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{3320390384119} a^{15} + \frac{11322477335}{3320390384119} a^{14} - \frac{135}{3320390384119} a^{13} - \frac{1426632144210}{3320390384119} a^{12} + \frac{7290}{3320390384119} a^{11} + \frac{890093071896}{3320390384119} a^{10} - \frac{200475}{3320390384119} a^{9} - \frac{114274705032}{3320390384119} a^{8} + \frac{2952450}{3320390384119} a^{7} - \frac{1216451023892}{3320390384119} a^{6} - \frac{22320522}{3320390384119} a^{5} + \frac{657925375114}{3320390384119} a^{4} + \frac{74401740}{3320390384119} a^{3} + \frac{179863098053}{3320390384119} a^{2} - \frac{71744535}{3320390384119} a + \frac{1018136946550}{3320390384119}$, $\frac{1}{3320390384119} a^{16} - \frac{144}{3320390384119} a^{14} + \frac{101902296015}{3320390384119} a^{13} + \frac{8424}{3320390384119} a^{12} + \frac{1358992902721}{3320390384119} a^{11} - \frac{256608}{3320390384119} a^{10} - \frac{1387653708303}{3320390384119} a^{9} + \frac{4330260}{3320390384119} a^{8} - \frac{574271434550}{3320390384119} a^{7} - \frac{39680928}{3320390384119} a^{6} - \frac{610930705463}{3320390384119} a^{5} + \frac{178564176}{3320390384119} a^{4} + \frac{1088992982524}{3320390384119} a^{3} - \frac{306110016}{3320390384119} a^{2} + \frac{22890615663}{3320390384119} a + \frac{86093442}{3320390384119}$, $\frac{1}{3320390384119} a^{17} - \frac{1588051351864}{3320390384119} a^{14} - \frac{11016}{3320390384119} a^{13} - \frac{1532222432260}{3320390384119} a^{12} + \frac{793152}{3320390384119} a^{11} + \frac{610914048199}{3320390384119} a^{10} - \frac{24538140}{3320390384119} a^{9} - \frac{427877038563}{3320390384119} a^{8} + \frac{385471872}{3320390384119} a^{7} + \frac{200812212396}{3320390384119} a^{6} - \frac{3035590992}{3320390384119} a^{5} - \frac{461074140511}{3320390384119} a^{4} + \frac{10407740544}{3320390384119} a^{3} - \frac{639946337657}{3320390384119} a^{2} - \frac{10245119598}{3320390384119} a + \frac{514543401964}{3320390384119}$, $\frac{1}{3320390384119} a^{18} - \frac{12393}{3320390384119} a^{14} - \frac{93779966165}{3320390384119} a^{13} + \frac{966654}{3320390384119} a^{12} - \frac{696000286194}{3320390384119} a^{11} - \frac{33126489}{3320390384119} a^{10} + \frac{648168123995}{3320390384119} a^{9} + \frac{596276802}{3320390384119} a^{8} - \frac{1157422141848}{3320390384119} a^{7} - \frac{5691733110}{3320390384119} a^{6} + \frac{1306978194229}{3320390384119} a^{5} + \frac{26344593252}{3320390384119} a^{4} - \frac{999470146592}{3320390384119} a^{3} - \frac{46103038191}{3320390384119} a^{2} + \frac{979812445727}{3320390384119} a + \frac{13172296626}{3320390384119}$, $\frac{1}{3320390384119} a^{19} + \frac{769285513492}{3320390384119} a^{14} - \frac{706401}{3320390384119} a^{13} + \frac{130631952951}{3320390384119} a^{12} + \frac{57218481}{3320390384119} a^{11} + \frac{1234752087805}{3320390384119} a^{10} - \frac{1888209873}{3320390384119} a^{9} + \frac{442852415389}{3320390384119} a^{8} + \frac{30897979740}{3320390384119} a^{7} + \frac{401783000933}{3320390384119} a^{6} - \frac{250273635894}{3320390384119} a^{5} + \frac{1111310629065}{3320390384119} a^{4} + \frac{875957725629}{3320390384119} a^{3} - \frac{1279151511412}{3320390384119} a^{2} - \frac{875957725629}{3320390384119} a + \frac{287718941950}{3320390384119}$, $\frac{1}{3320390384119} a^{20} - \frac{831060}{3320390384119} a^{14} + \frac{1052074366682}{3320390384119} a^{13} + \frac{72925515}{3320390384119} a^{12} + \frac{1282717508116}{3320390384119} a^{11} - \frac{2665708056}{3320390384119} a^{10} + \frac{783998548896}{3320390384119} a^{9} + \frac{49982026050}{3320390384119} a^{8} - \frac{94564077826}{3320390384119} a^{7} - \frac{490732619400}{3320390384119} a^{6} + \frac{1012041698905}{3320390384119} a^{5} - \frac{1001678757454}{3320390384119} a^{4} + \frac{158541717161}{3320390384119} a^{3} - \frac{801763618841}{3320390384119} a^{2} + \frac{1391664688201}{3320390384119} a + \frac{1192480265142}{3320390384119}$, $\frac{1}{3320390384119} a^{21} + \frac{723739798536}{3320390384119} a^{14} - \frac{39267585}{3320390384119} a^{13} - \frac{512201899035}{3320390384119} a^{12} + \frac{3392719344}{3320390384119} a^{11} + \frac{1642164023717}{3320390384119} a^{10} - \frac{116624727450}{3320390384119} a^{9} + \frac{574838599892}{3320390384119} a^{8} - \frac{1357459906519}{3320390384119} a^{7} - \frac{117573195280}{3320390384119} a^{6} + \frac{370970533940}{3320390384119} a^{5} + \frac{295450314033}{3320390384119} a^{4} + \frac{1263519511417}{3320390384119} a^{3} + \frac{1083620345239}{3320390384119} a^{2} + \frac{1335493922184}{3320390384119} a + \frac{1129605182349}{3320390384119}$, $\frac{1}{3320390384119} a^{22} - \frac{47993715}{3320390384119} a^{14} + \frac{901349763874}{3320390384119} a^{13} + \frac{4492211724}{3320390384119} a^{12} - \frac{1641037322751}{3320390384119} a^{11} - \frac{171049600260}{3320390384119} a^{10} + \frac{1212335256549}{3320390384119} a^{9} - \frac{21576664819}{3320390384119} a^{8} - \frac{1657964867220}{3320390384119} a^{7} + \frac{140793609115}{3320390384119} a^{6} - \frac{12594028929}{3320390384119} a^{5} - \frac{675809323752}{3320390384119} a^{4} - \frac{1209955562340}{3320390384119} a^{3} - \frac{111699370894}{3320390384119} a^{2} - \frac{1283561798937}{3320390384119} a + \frac{463858956965}{3320390384119}$, $\frac{1}{3320390384119} a^{23} + \frac{202175566097}{3320390384119} a^{14} - \frac{1986939801}{3320390384119} a^{13} + \frac{124761610057}{3320390384119} a^{12} + \frac{178824582090}{3320390384119} a^{11} + \frac{135438069647}{3320390384119} a^{10} + \frac{318054472913}{3320390384119} a^{9} - \frac{1184449646374}{3320390384119} a^{8} - \frac{936949056252}{3320390384119} a^{7} - \frac{1330339273822}{3320390384119} a^{6} + \frac{565513227455}{3320390384119} a^{5} + \frac{55735138780}{3320390384119} a^{4} + \frac{1284542765281}{3320390384119} a^{3} - \frac{810975492338}{3320390384119} a^{2} + \frac{421921690843}{3320390384119} a + \frac{1317184386364}{3320390384119}$, $\frac{1}{3320390384119} a^{24} - \frac{2509818696}{3320390384119} a^{14} + \frac{855339960200}{3320390384119} a^{13} + \frac{244707322860}{3320390384119} a^{12} + \frac{528891771353}{3320390384119} a^{11} + \frac{377249188917}{3320390384119} a^{10} + \frac{1277135093187}{3320390384119} a^{9} - \frac{578788239558}{3320390384119} a^{8} - \frac{1360328520604}{3320390384119} a^{7} + \frac{1365311551701}{3320390384119} a^{6} + \frac{1344978767370}{3320390384119} a^{5} - \frac{193856796076}{3320390384119} a^{4} + \frac{425529719227}{3320390384119} a^{3} + \frac{1258027915807}{3320390384119} a^{2} + \frac{717766929519}{3320390384119} a + \frac{1319172595296}{3320390384119}$, $\frac{1}{3320390384119} a^{25} + \frac{956309416881}{3320390384119} a^{14} - \frac{94118201100}{3320390384119} a^{13} + \frac{1088301766023}{3320390384119} a^{12} - \frac{1248514821957}{3320390384119} a^{11} + \frac{149463429974}{3320390384119} a^{10} + \frac{964647065930}{3320390384119} a^{9} + \frac{963176643170}{3320390384119} a^{8} + \frac{368183203293}{3320390384119} a^{7} + \frac{624171007241}{3320390384119} a^{6} + \frac{969283980380}{3320390384119} a^{5} + \frac{1429985895882}{3320390384119} a^{4} + \frac{701282378406}{3320390384119} a^{3} - \frac{712161871925}{3320390384119} a^{2} + \frac{314424542306}{3320390384119} a + \frac{796332244132}{3320390384119}$, $\frac{1}{3320390384119} a^{26} - \frac{122353661430}{3320390384119} a^{14} + \frac{694848064317}{3320390384119} a^{13} - \frac{1011237204496}{3320390384119} a^{12} + \frac{1473621017384}{3320390384119} a^{11} + \frac{840771346027}{3320390384119} a^{10} + \frac{1073137214704}{3320390384119} a^{9} - \frac{213474999945}{3320390384119} a^{8} - \frac{995248318987}{3320390384119} a^{7} + \frac{993318496117}{3320390384119} a^{6} + \frac{1320943773243}{3320390384119} a^{5} + \frac{557075283984}{3320390384119} a^{4} - \frac{348688129795}{3320390384119} a^{3} - \frac{1021304687304}{3320390384119} a^{2} + \frac{1631693415692}{3320390384119} a + \frac{1507122079485}{3320390384119}$, $\frac{1}{3320390384119} a^{27} + \frac{1466621097367}{3320390384119} a^{14} - \frac{927029576951}{3320390384119} a^{13} + \frac{521539992535}{3320390384119} a^{12} - \frac{386050157284}{3320390384119} a^{11} + \frac{55487375004}{3320390384119} a^{10} - \frac{1339982692142}{3320390384119} a^{9} + \frac{1042550547009}{3320390384119} a^{8} - \frac{1131223111107}{3320390384119} a^{7} + \frac{215566904174}{3320390384119} a^{6} + \frac{813551606191}{3320390384119} a^{5} - \frac{357207683619}{3320390384119} a^{4} - \frac{769428966621}{3320390384119} a^{3} + \frac{1650862411796}{3320390384119} a^{2} + \frac{671315065948}{3320390384119} a - \frac{1023487707993}{3320390384119}$
Class group and class number
Not computed
Unit group
| Rank: | $27$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 28 |
| The 28 conjugacy class representatives for $C_{28}$ |
| Character table for $C_{28}$ is not computed |
Intermediate fields
| \(\Q(\sqrt{29}) \), 4.4.29876525.2, 7.7.594823321.1, \(\Q(\zeta_{29})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $28$ | $28$ | R | R | $28$ | ${\href{/LocalNumberField/13.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{7}$ | $28$ | ${\href{/LocalNumberField/23.14.0.1}{14} }^{2}$ | R | $28$ | $28$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{7}$ | $28$ | $28$ | ${\href{/LocalNumberField/53.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{14}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.14.7.1 | $x^{14} - 250 x^{8} + 15625 x^{2} - 312500$ | $2$ | $7$ | $7$ | $C_{14}$ | $[\ ]_{2}^{7}$ |
| 5.14.7.1 | $x^{14} - 250 x^{8} + 15625 x^{2} - 312500$ | $2$ | $7$ | $7$ | $C_{14}$ | $[\ ]_{2}^{7}$ | |
| $7$ | 7.14.7.2 | $x^{14} - 686 x^{8} + 117649 x^{2} - 3294172$ | $2$ | $7$ | $7$ | $C_{14}$ | $[\ ]_{2}^{7}$ |
| 7.14.7.2 | $x^{14} - 686 x^{8} + 117649 x^{2} - 3294172$ | $2$ | $7$ | $7$ | $C_{14}$ | $[\ ]_{2}^{7}$ | |
| 29 | Data not computed | ||||||