Normalized defining polynomial
\( x^{28} - x^{27} - 86 x^{26} + 86 x^{25} + 3307 x^{24} - 3307 x^{23} - 74993 x^{22} + 74993 x^{21} + 1113601 x^{20} - 1113601 x^{19} - 11366636 x^{18} + 11366636 x^{17} + 81421213 x^{16} - 81421213 x^{15} - 410233883 x^{14} + 410233883 x^{13} + 1433472727 x^{12} - 1433472727 x^{11} - 3360164459 x^{10} + 3360164459 x^{9} + 4965626443 x^{8} - 4965626443 x^{7} - 4117054541 x^{6} + 4117054541 x^{5} + 1492836655 x^{4} - 1492836655 x^{3} - 125401190 x^{2} + 125401190 x + 13304911 \)
Invariants
| Degree: | $28$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[28, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1159427335739550761098088865697701264851767903254485069=11^{14}\cdot 29^{27}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $85.28$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $11, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(319=11\cdot 29\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{319}(1,·)$, $\chi_{319}(131,·)$, $\chi_{319}(100,·)$, $\chi_{319}(263,·)$, $\chi_{319}(265,·)$, $\chi_{319}(10,·)$, $\chi_{319}(76,·)$, $\chi_{319}(98,·)$, $\chi_{319}(142,·)$, $\chi_{319}(144,·)$, $\chi_{319}(210,·)$, $\chi_{319}(67,·)$, $\chi_{319}(21,·)$, $\chi_{319}(23,·)$, $\chi_{319}(153,·)$, $\chi_{319}(122,·)$, $\chi_{319}(199,·)$, $\chi_{319}(32,·)$, $\chi_{319}(34,·)$, $\chi_{319}(164,·)$, $\chi_{319}(230,·)$, $\chi_{319}(43,·)$, $\chi_{319}(78,·)$, $\chi_{319}(45,·)$, $\chi_{319}(111,·)$, $\chi_{319}(307,·)$, $\chi_{319}(186,·)$, $\chi_{319}(254,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{2977199} a^{15} + \frac{742231}{2977199} a^{14} - \frac{45}{2977199} a^{13} - \frac{1401712}{2977199} a^{12} + \frac{810}{2977199} a^{11} - \frac{689344}{2977199} a^{10} - \frac{7425}{2977199} a^{9} + \frac{1309616}{2977199} a^{8} + \frac{36450}{2977199} a^{7} - \frac{141429}{2977199} a^{6} - \frac{91854}{2977199} a^{5} + \frac{282858}{2977199} a^{4} + \frac{102060}{2977199} a^{3} + \frac{1276456}{2977199} a^{2} - \frac{32805}{2977199} a - \frac{1371484}{2977199}$, $\frac{1}{2977199} a^{16} - \frac{48}{2977199} a^{14} - \frac{750506}{2977199} a^{13} + \frac{936}{2977199} a^{12} - \frac{502256}{2977199} a^{11} - \frac{9504}{2977199} a^{10} - \frac{1397757}{2977199} a^{9} + \frac{53460}{2977199} a^{8} - \frac{654066}{2977199} a^{7} - \frac{163296}{2977199} a^{6} - \frac{687968}{2977199} a^{5} + \frac{244944}{2977199} a^{4} + \frac{1031952}{2977199} a^{3} - \frac{139968}{2977199} a^{2} - \frac{16951}{2977199} a + \frac{13122}{2977199}$, $\frac{1}{2977199} a^{17} - \frac{849806}{2977199} a^{14} - \frac{1224}{2977199} a^{13} + \frac{691145}{2977199} a^{12} + \frac{29376}{2977199} a^{11} + \frac{1240119}{2977199} a^{10} - \frac{302940}{2977199} a^{9} - \frac{313677}{2977199} a^{8} - \frac{1390895}{2977199} a^{7} + \frac{1455037}{2977199} a^{6} - \frac{1186849}{2977199} a^{5} - \frac{276859}{2977199} a^{4} - \frac{1195486}{2977199} a^{3} - \frac{1268242}{2977199} a^{2} + \frac{1415681}{2977199} a - \frac{332854}{2977199}$, $\frac{1}{2977199} a^{18} - \frac{1377}{2977199} a^{14} + \frac{1153462}{2977199} a^{13} + \frac{35802}{2977199} a^{12} - \frac{1127189}{2977199} a^{11} - \frac{408969}{2977199} a^{10} - \frac{1438546}{2977199} a^{9} - \frac{523385}{2977199} a^{8} - \frac{871858}{2977199} a^{7} + \frac{1124007}{2977199} a^{6} + \frac{823398}{2977199} a^{5} + \frac{137200}{2977199} a^{4} + \frac{1148049}{2977199} a^{3} - \frac{1072433}{2977199} a^{2} + \frac{272752}{2977199} a + \frac{669222}{2977199}$, $\frac{1}{2977199} a^{19} - \frac{950907}{2977199} a^{14} - \frac{26163}{2977199} a^{13} + \frac{917538}{2977199} a^{12} + \frac{706401}{2977199} a^{11} - \frac{938753}{2977199} a^{10} + \frac{1161186}{2977199} a^{9} + \frac{1263979}{2977199} a^{8} + \frac{703274}{2977199} a^{7} - \frac{406400}{2977199} a^{6} - \frac{1303400}{2977199} a^{5} + \frac{630446}{2977199} a^{4} - \frac{464166}{2977199} a^{3} + \frac{1405254}{2977199} a^{2} + \frac{154722}{2977199} a - \frac{989302}{2977199}$, $\frac{1}{2977199} a^{20} - \frac{30780}{2977199} a^{14} - \frac{192491}{2977199} a^{13} + \frac{900315}{2977199} a^{12} + \frac{1178575}{2977199} a^{11} + \frac{938804}{2977199} a^{10} - \frac{281667}{2977199} a^{9} + \frac{86873}{2977199} a^{8} - \frac{397008}{2977199} a^{7} - \frac{1096275}{2977199} a^{6} + \frac{1083130}{2977199} a^{5} - \frac{878416}{2977199} a^{4} + \frac{240672}{2977199} a^{3} - \frac{1023190}{2977199} a^{2} - \frac{402315}{2977199} a - \frac{645635}{2977199}$, $\frac{1}{2977199} a^{21} - \frac{1347437}{2977199} a^{14} - \frac{484785}{2977199} a^{13} - \frac{926076}{2977199} a^{12} - \frac{924187}{2977199} a^{11} + \frac{207286}{2977199} a^{10} + \frac{789696}{2977199} a^{9} + \frac{1286211}{2977199} a^{8} + \frac{1407901}{2977199} a^{7} + \frac{563448}{2977199} a^{6} + \frac{194514}{2977199} a^{5} + \frac{1280036}{2977199} a^{4} - \frac{561335}{2977199} a^{3} - \frac{1181838}{2977199} a^{2} - \frac{1113074}{2977199} a - \frac{572899}{2977199}$, $\frac{1}{2977199} a^{22} - \frac{592515}{2977199} a^{14} + \frac{960438}{2977199} a^{13} + \frac{623274}{2977199} a^{12} - \frac{1000777}{2977199} a^{11} + \frac{562781}{2977199} a^{10} - \frac{44874}{2977199} a^{9} - \frac{1065993}{2977199} a^{8} - \frac{209805}{2977199} a^{7} + \frac{1057832}{2977199} a^{6} - \frac{1058533}{2977199} a^{5} + \frac{689228}{2977199} a^{4} + \frac{1416572}{2977199} a^{3} + \frac{181903}{2977199} a^{2} - \frac{770131}{2977199} a + \frac{813578}{2977199}$, $\frac{1}{2977199} a^{23} + \frac{1056720}{2977199} a^{14} + \frac{754890}{2977199} a^{13} + \frac{909777}{2977199} a^{12} + \frac{1170892}{2977199} a^{11} + \frac{1180174}{2977199} a^{10} - \frac{189746}{2977199} a^{9} - \frac{1301328}{2977199} a^{8} - \frac{1349163}{2977199} a^{7} - \frac{10885}{50461} a^{6} - \frac{985862}{2977199} a^{5} + \frac{583936}{2977199} a^{4} - \frac{603285}{2977199} a^{3} - \frac{145654}{2977199} a^{2} - \frac{1485925}{2977199} a - \frac{1352409}{2977199}$, $\frac{1}{2977199} a^{24} - \frac{1396875}{2977199} a^{14} + \frac{826993}{2977199} a^{13} - \frac{748147}{2977199} a^{12} - \frac{306913}{2977199} a^{11} + \frac{213808}{2977199} a^{10} - \frac{74693}{2977199} a^{9} - \frac{1403115}{2977199} a^{8} + \frac{914447}{2977199} a^{7} + \frac{431616}{2977199} a^{6} - \frac{1076181}{2977199} a^{5} - \frac{461042}{2977199} a^{4} + \frac{44921}{2977199} a^{3} + \frac{640292}{2977199} a^{2} + \frac{819234}{2977199} a + \frac{894071}{2977199}$, $\frac{1}{2977199} a^{25} + \frac{1157766}{2977199} a^{14} - \frac{1086343}{2977199} a^{13} + \frac{686616}{2977199} a^{12} + \frac{346938}{2977199} a^{11} - \frac{93327}{2977199} a^{10} - \frac{638674}{2977199} a^{9} + \frac{1066907}{2977199} a^{8} + \frac{468068}{2977199} a^{7} + \frac{1260686}{2977199} a^{6} - \frac{671989}{2977199} a^{5} + \frac{1325585}{2977199} a^{4} - \frac{448522}{2977199} a^{3} - \frac{141264}{2977199} a^{2} + \frac{1456704}{2977199} a + \frac{117612}{2977199}$, $\frac{1}{2977199} a^{26} - \frac{1114526}{2977199} a^{14} - \frac{803496}{2977199} a^{13} - \frac{1446575}{2977199} a^{12} - \frac{66102}{2977199} a^{11} + \frac{670900}{2977199} a^{10} - \frac{671255}{2977199} a^{9} - \frac{503068}{2977199} a^{8} - \frac{491388}{2977199} a^{7} + \frac{1025023}{2977199} a^{6} + \frac{1215469}{2977199} a^{5} - \frac{865347}{2977199} a^{4} + \frac{311887}{2977199} a^{3} + \frac{1025023}{2977199} a^{2} + \frac{503599}{2977199} a + \frac{1207283}{2977199}$, $\frac{1}{2977199} a^{27} - \frac{638533}{2977199} a^{14} - \frac{987862}{2977199} a^{13} - \frac{1040150}{2977199} a^{12} + \frac{1345663}{2977199} a^{11} + \frac{514542}{2977199} a^{10} + \frac{754602}{2977199} a^{9} - \frac{991112}{2977199} a^{8} - \frac{1359831}{2977199} a^{7} - \frac{258329}{2977199} a^{6} - \frac{571737}{2977199} a^{5} + \frac{282284}{2977199} a^{4} - \frac{293610}{2977199} a^{3} + \frac{1270101}{2977199} a^{2} - \frac{814427}{2977199} a - \frac{1066004}{2977199}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $27$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1525104928454641200 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 28 |
| The 28 conjugacy class representatives for $C_{28}$ |
| Character table for $C_{28}$ is not computed |
Intermediate fields
| \(\Q(\sqrt{29}) \), 4.4.2951069.1, 7.7.594823321.1, \(\Q(\zeta_{29})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $28$ | $28$ | ${\href{/LocalNumberField/5.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/7.14.0.1}{14} }^{2}$ | R | ${\href{/LocalNumberField/13.7.0.1}{7} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{7}$ | $28$ | ${\href{/LocalNumberField/23.7.0.1}{7} }^{4}$ | R | $28$ | $28$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{7}$ | $28$ | $28$ | ${\href{/LocalNumberField/53.7.0.1}{7} }^{4}$ | ${\href{/LocalNumberField/59.1.0.1}{1} }^{28}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 11 | Data not computed | ||||||
| 29 | Data not computed | ||||||