Normalized defining polynomial
\( x^{28} - 5 x^{27} - 3 x^{26} + 57 x^{25} - 13 x^{24} - 420 x^{23} + 259 x^{22} + 2099 x^{21} - 1147 x^{20} - 7975 x^{19} + 7844 x^{18} + 15881 x^{17} - 34395 x^{16} - 17074 x^{15} + 107194 x^{14} - 103829 x^{13} + 94772 x^{12} - 84342 x^{11} - 113950 x^{10} + 177636 x^{9} - 26899 x^{8} + 2410 x^{7} + 74025 x^{6} - 120275 x^{5} - 49775 x^{4} + 101875 x^{3} - 41875 x^{2} + 31250 x - 15625 \)
Invariants
Degree: | $28$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
| |
Signature: | $[2, 13]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
| |
Discriminant: | \(-725917312055025700242151478457681268310546875\)\(\medspace = -\,5^{14}\cdot 499^{13}\) | sage: K.disc()
gp: K.disc
magma: Discriminant(Integers(K));
| |
Root discriminant: | $40.01$ | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
| |
Ramified primes: | $5, 499$ | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(Integers(K)));
| |
$|\Aut(K/\Q)|$: | $2$ | ||
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{5} a^{8} + \frac{2}{5} a^{7} - \frac{2}{5} a^{6} - \frac{1}{5} a^{5} - \frac{2}{5} a^{4} + \frac{2}{5} a^{3} + \frac{1}{5} a^{2}$, $\frac{1}{5} a^{9} - \frac{1}{5} a^{7} - \frac{2}{5} a^{6} + \frac{1}{5} a^{4} + \frac{2}{5} a^{3} - \frac{2}{5} a^{2}$, $\frac{1}{5} a^{10} - \frac{2}{5} a^{6} + \frac{1}{5} a^{2}$, $\frac{1}{5} a^{11} - \frac{2}{5} a^{7} + \frac{1}{5} a^{3}$, $\frac{1}{5} a^{12} - \frac{1}{5} a^{7} + \frac{1}{5} a^{6} - \frac{2}{5} a^{5} + \frac{2}{5} a^{4} - \frac{1}{5} a^{3} + \frac{2}{5} a^{2}$, $\frac{1}{5} a^{13} - \frac{2}{5} a^{7} + \frac{1}{5} a^{6} + \frac{1}{5} a^{5} + \frac{2}{5} a^{4} - \frac{1}{5} a^{3} + \frac{1}{5} a^{2}$, $\frac{1}{25} a^{14} + \frac{2}{25} a^{12} + \frac{2}{25} a^{11} + \frac{2}{25} a^{10} + \frac{1}{25} a^{9} - \frac{1}{25} a^{8} + \frac{1}{25} a^{7} + \frac{1}{5} a^{6} - \frac{3}{25} a^{5} - \frac{3}{25} a^{4} - \frac{1}{5} a^{3} - \frac{2}{5} a^{2}$, $\frac{1}{25} a^{15} + \frac{2}{25} a^{13} + \frac{2}{25} a^{12} + \frac{2}{25} a^{11} + \frac{1}{25} a^{10} - \frac{1}{25} a^{9} + \frac{1}{25} a^{8} + \frac{1}{5} a^{7} - \frac{3}{25} a^{6} - \frac{3}{25} a^{5} - \frac{1}{5} a^{4} - \frac{2}{5} a^{3}$, $\frac{1}{25} a^{16} + \frac{2}{25} a^{13} - \frac{2}{25} a^{12} + \frac{2}{25} a^{11} - \frac{1}{25} a^{9} + \frac{2}{25} a^{8} + \frac{12}{25} a^{6} + \frac{6}{25} a^{5} + \frac{6}{25} a^{4} + \frac{1}{5} a^{3} - \frac{1}{5} a^{2}$, $\frac{1}{25} a^{17} - \frac{2}{25} a^{13} - \frac{2}{25} a^{12} + \frac{1}{25} a^{11} + \frac{2}{25} a^{8} + \frac{11}{25} a^{6} + \frac{12}{25} a^{5} + \frac{11}{25} a^{4} + \frac{2}{5} a^{3}$, $\frac{1}{25} a^{18} - \frac{2}{25} a^{13} - \frac{1}{25} a^{11} - \frac{1}{25} a^{10} - \frac{1}{25} a^{9} - \frac{2}{25} a^{8} + \frac{8}{25} a^{7} + \frac{12}{25} a^{6} - \frac{2}{5} a^{5} - \frac{11}{25} a^{4} + \frac{1}{5} a^{3}$, $\frac{1}{125} a^{19} - \frac{2}{125} a^{18} - \frac{1}{125} a^{17} + \frac{2}{125} a^{16} + \frac{1}{125} a^{15} - \frac{1}{125} a^{14} + \frac{7}{125} a^{13} + \frac{6}{125} a^{12} + \frac{8}{125} a^{11} + \frac{9}{125} a^{10} + \frac{3}{125} a^{9} + \frac{9}{125} a^{8} - \frac{8}{125} a^{7} - \frac{29}{125} a^{6} - \frac{7}{125} a^{5} - \frac{3}{25} a^{4} - \frac{1}{5} a^{3} + \frac{2}{5} a^{2} + \frac{2}{5} a$, $\frac{1}{125} a^{20} + \frac{1}{125} a^{15} - \frac{1}{25} a^{12} + \frac{6}{125} a^{10} + \frac{2}{25} a^{9} - \frac{1}{25} a^{8} + \frac{3}{25} a^{7} + \frac{2}{25} a^{6} - \frac{44}{125} a^{5} - \frac{2}{5} a^{4} + \frac{2}{5} a^{3} + \frac{2}{5} a^{2} - \frac{1}{5} a$, $\frac{1}{125} a^{21} + \frac{1}{125} a^{16} - \frac{1}{25} a^{13} + \frac{6}{125} a^{11} + \frac{2}{25} a^{10} - \frac{1}{25} a^{9} - \frac{2}{25} a^{8} - \frac{8}{25} a^{7} + \frac{6}{125} a^{6} - \frac{1}{5} a^{5} - \frac{1}{5} a^{4} - \frac{2}{5} a^{2}$, $\frac{1}{625} a^{22} + \frac{2}{625} a^{21} - \frac{1}{625} a^{20} + \frac{2}{625} a^{19} - \frac{9}{625} a^{18} + \frac{4}{625} a^{17} - \frac{9}{625} a^{16} - \frac{4}{625} a^{15} - \frac{2}{625} a^{14} + \frac{39}{625} a^{13} - \frac{32}{625} a^{12} - \frac{57}{625} a^{11} + \frac{62}{625} a^{10} + \frac{56}{625} a^{9} + \frac{18}{625} a^{8} + \frac{2}{125} a^{7} + \frac{99}{625} a^{6} + \frac{1}{5} a^{5} + \frac{11}{25} a^{4} + \frac{2}{5} a^{3} - \frac{9}{25} a^{2} - \frac{2}{5} a$, $\frac{1}{625} a^{23} - \frac{1}{625} a^{20} + \frac{2}{625} a^{19} - \frac{8}{625} a^{18} - \frac{7}{625} a^{17} - \frac{1}{625} a^{16} - \frac{9}{625} a^{15} + \frac{3}{625} a^{14} + \frac{4}{125} a^{13} - \frac{53}{625} a^{12} + \frac{26}{625} a^{11} + \frac{12}{625} a^{10} + \frac{51}{625} a^{9} + \frac{34}{625} a^{8} - \frac{91}{625} a^{7} + \frac{222}{625} a^{6} + \frac{8}{125} a^{5} + \frac{6}{25} a^{4} + \frac{11}{25} a^{3} + \frac{3}{25} a^{2} + \frac{1}{5} a$, $\frac{1}{6875} a^{24} - \frac{2}{6875} a^{23} + \frac{1}{6875} a^{22} + \frac{21}{6875} a^{21} - \frac{27}{6875} a^{20} - \frac{1}{1375} a^{19} - \frac{2}{125} a^{18} - \frac{63}{6875} a^{17} - \frac{1}{625} a^{16} + \frac{17}{6875} a^{15} - \frac{93}{6875} a^{14} + \frac{481}{6875} a^{13} - \frac{109}{1375} a^{12} + \frac{263}{6875} a^{11} + \frac{79}{6875} a^{10} + \frac{353}{6875} a^{9} - \frac{521}{6875} a^{8} + \frac{1224}{6875} a^{7} + \frac{569}{1375} a^{6} - \frac{394}{1375} a^{5} - \frac{11}{25} a^{4} + \frac{6}{25} a^{3} - \frac{9}{55} a^{2} + \frac{4}{55} a + \frac{2}{11}$, $\frac{1}{34375} a^{25} - \frac{1}{34375} a^{24} - \frac{1}{34375} a^{23} + \frac{2}{3125} a^{22} - \frac{61}{34375} a^{21} - \frac{87}{34375} a^{20} - \frac{23}{6875} a^{19} - \frac{448}{34375} a^{18} - \frac{349}{34375} a^{17} + \frac{501}{34375} a^{16} + \frac{144}{34375} a^{15} + \frac{388}{34375} a^{14} + \frac{1586}{34375} a^{13} + \frac{1368}{34375} a^{12} - \frac{2463}{34375} a^{11} + \frac{1477}{34375} a^{10} + \frac{3132}{34375} a^{9} + \frac{2903}{34375} a^{8} + \frac{3244}{34375} a^{7} + \frac{1814}{6875} a^{6} - \frac{411}{1375} a^{5} - \frac{18}{125} a^{4} + \frac{186}{1375} a^{3} - \frac{126}{275} a^{2} + \frac{27}{55} a - \frac{4}{11}$, $\frac{1}{26778125} a^{26} + \frac{1}{130625} a^{25} + \frac{543}{26778125} a^{24} - \frac{6084}{26778125} a^{23} + \frac{9016}{26778125} a^{22} - \frac{100688}{26778125} a^{21} + \frac{82493}{26778125} a^{20} + \frac{100977}{26778125} a^{19} + \frac{388008}{26778125} a^{18} + \frac{303262}{26778125} a^{17} - \frac{32526}{5355625} a^{16} - \frac{342528}{26778125} a^{15} - \frac{327476}{26778125} a^{14} - \frac{850011}{26778125} a^{13} - \frac{195039}{5355625} a^{12} + \frac{2129609}{26778125} a^{11} + \frac{1035609}{26778125} a^{10} - \frac{10898}{281875} a^{9} - \frac{374853}{26778125} a^{8} - \frac{13261541}{26778125} a^{7} + \frac{2183}{5225} a^{6} - \frac{452668}{1071125} a^{5} + \frac{388508}{1071125} a^{4} - \frac{35749}{97375} a^{3} + \frac{3148}{19475} a^{2} + \frac{11653}{42845} a - \frac{2570}{8569}$, $\frac{1}{68197585161567464382778623695847273894144760890625} a^{27} + \frac{919207749021906554682959668295283150569862}{68197585161567464382778623695847273894144760890625} a^{26} + \frac{734587698440445715999305411999321280897312481}{68197585161567464382778623695847273894144760890625} a^{25} + \frac{4826882319811856074156454294079503111987396969}{68197585161567464382778623695847273894144760890625} a^{24} + \frac{9207646722489444534181629106955156618791364198}{13639517032313492876555724739169454778828952178125} a^{23} - \frac{4875381967358295922385459078525796834712883369}{13639517032313492876555724739169454778828952178125} a^{22} + \frac{132187126730934484308749726582853353476167653519}{68197585161567464382778623695847273894144760890625} a^{21} - \frac{11324727442892648458778821260631200711883032103}{68197585161567464382778623695847273894144760890625} a^{20} + \frac{213929358529516500173946625642667993254645629097}{68197585161567464382778623695847273894144760890625} a^{19} - \frac{506909480747572256568579375713705106032137010291}{68197585161567464382778623695847273894144760890625} a^{18} + \frac{1194213751807359788305778752747583407336431995932}{68197585161567464382778623695847273894144760890625} a^{17} - \frac{271632935331935729201633489422462222123468811671}{13639517032313492876555724739169454778828952178125} a^{16} - \frac{217894135214727561193887412043839427492668917019}{13639517032313492876555724739169454778828952178125} a^{15} + \frac{242909529162515945579326889464479996912842161}{151214157786180630560484753205869786904977296875} a^{14} + \frac{297774521533828449884671967739323912927228476971}{6199780469233405852979874881440661263104069171875} a^{13} - \frac{2920889944079587267285758245807321029207345104447}{68197585161567464382778623695847273894144760890625} a^{12} + \frac{4435536312246787018071535765022570441261712245678}{68197585161567464382778623695847273894144760890625} a^{11} - \frac{4585611167609831281935250915217012903022670604826}{68197585161567464382778623695847273894144760890625} a^{10} - \frac{5929001284063086406005545392381870398294116416377}{68197585161567464382778623695847273894144760890625} a^{9} - \frac{2308755217309046394643773359472379715905965540628}{68197585161567464382778623695847273894144760890625} a^{8} + \frac{837020560450204070127701393019846024785301543903}{13639517032313492876555724739169454778828952178125} a^{7} + \frac{91757338010360042892384289280444312577421781178}{247991218769336234119194995257626450524162766875} a^{6} - \frac{25163566944880033015224760979024859569205484878}{2727903406462698575311144947833890955765790435625} a^{5} + \frac{731243363267716860050651594519464739000747358633}{2727903406462698575311144947833890955765790435625} a^{4} + \frac{89361547003539180550559924511010001672313391821}{545580681292539715062228989566778191153158087125} a^{3} - \frac{18714866590684908613001126609036829179188699936}{109116136258507943012445797913355638230631617425} a^{2} + \frac{3313184066430435527920984601531430103617420404}{21823227251701588602489159582671127646126323485} a - \frac{2094308493428239412423457222950719576375792571}{4364645450340317720497831916534225529225264697}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
Rank: | $14$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
| |
Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K!f(g): g in Generators(UK)];
| |
Regulator: | \( 2346058429844.763 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
|
Class number formula
Galois group
A solvable group of order 56 |
The 17 conjugacy class representatives for $D_{28}$ |
Character table for $D_{28}$ |
Intermediate fields
\(\Q(\sqrt{5}) \), 4.2.12475.1, 7.1.15531437375.1, 14.2.1206127734667734453125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | $28$ | $28$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{7}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{13}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | $28$ | $28$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{13}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | $28$ | ${\href{/LocalNumberField/29.7.0.1}{7} }^{4}$ | ${\href{/LocalNumberField/31.7.0.1}{7} }^{4}$ | $28$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{13}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{14}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{14}$ | $28$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{13}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
$5$ | 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
499 | Data not computed |