Normalized defining polynomial
\( x^{28} - 20 x^{26} + 294 x^{24} - 3361 x^{22} + 28147 x^{20} - 154673 x^{18} + 536790 x^{16} - 1083403 x^{14} + 980940 x^{12} + 64462 x^{10} - 677733 x^{8} - 44521 x^{6} + 115444 x^{4} + 5415 x^{2} - 6859 \)
Invariants
Degree: | $28$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
| |
Signature: | $[2, 13]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
| |
Discriminant: | \(-5576015581167650909427113418703236578781943428571\)\(\medspace = -\,19^{13}\cdot 197^{14}\) | sage: K.disc()
gp: K.disc
magma: Discriminant(Integers(K));
| |
Root discriminant: | $55.07$ | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
| |
Ramified primes: | $19, 197$ | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(Integers(K)));
| |
$|\Aut(K/\Q)|$: | $2$ | ||
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{10} a^{14} + \frac{1}{5} a^{12} - \frac{1}{2} a^{11} + \frac{1}{10} a^{10} - \frac{1}{2} a^{9} + \frac{2}{5} a^{8} - \frac{1}{2} a^{7} + \frac{2}{5} a^{6} + \frac{1}{10} a^{4} - \frac{1}{2} a^{3} + \frac{1}{5} a^{2} - \frac{1}{2} a + \frac{1}{10}$, $\frac{1}{10} a^{15} + \frac{1}{5} a^{13} - \frac{1}{2} a^{12} + \frac{1}{10} a^{11} - \frac{1}{2} a^{10} + \frac{2}{5} a^{9} - \frac{1}{2} a^{8} + \frac{2}{5} a^{7} + \frac{1}{10} a^{5} - \frac{1}{2} a^{4} + \frac{1}{5} a^{3} - \frac{1}{2} a^{2} + \frac{1}{10} a$, $\frac{1}{10} a^{16} - \frac{1}{2} a^{13} - \frac{3}{10} a^{12} - \frac{1}{2} a^{11} + \frac{1}{5} a^{10} - \frac{1}{2} a^{9} - \frac{2}{5} a^{8} + \frac{3}{10} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{3}{10} a^{2} - \frac{1}{5}$, $\frac{1}{10} a^{17} - \frac{3}{10} a^{13} - \frac{1}{2} a^{12} - \frac{3}{10} a^{11} + \frac{1}{10} a^{9} - \frac{1}{5} a^{7} - \frac{1}{2} a^{6} + \frac{1}{5} a^{3} + \frac{3}{10} a - \frac{1}{2}$, $\frac{1}{10} a^{18} - \frac{1}{2} a^{13} + \frac{3}{10} a^{12} - \frac{1}{2} a^{11} + \frac{2}{5} a^{10} - \frac{1}{2} a^{9} + \frac{1}{5} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{10} a^{2} + \frac{3}{10}$, $\frac{1}{10} a^{19} + \frac{3}{10} a^{13} - \frac{1}{2} a^{12} - \frac{1}{10} a^{11} - \frac{1}{2} a^{9} - \frac{3}{10} a^{7} - \frac{1}{2} a^{5} + \frac{2}{5} a^{3} - \frac{1}{5} a - \frac{1}{2}$, $\frac{1}{10} a^{20} - \frac{1}{2} a^{13} + \frac{3}{10} a^{12} - \frac{1}{2} a^{11} + \frac{1}{5} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} + \frac{3}{10} a^{6} + \frac{1}{10} a^{4} - \frac{1}{2} a^{3} + \frac{1}{5} a^{2} - \frac{3}{10}$, $\frac{1}{10} a^{21} + \frac{3}{10} a^{13} - \frac{1}{2} a^{12} - \frac{3}{10} a^{11} - \frac{1}{2} a^{8} - \frac{1}{5} a^{7} + \frac{1}{10} a^{5} - \frac{3}{10} a^{3} + \frac{1}{5} a - \frac{1}{2}$, $\frac{1}{89870} a^{22} - \frac{687}{89870} a^{20} + \frac{509}{89870} a^{18} + \frac{447}{89870} a^{16} + \frac{1457}{44935} a^{14} + \frac{12137}{44935} a^{12} + \frac{2197}{8170} a^{10} - \frac{1}{2} a^{9} - \frac{8571}{89870} a^{8} - \frac{3807}{89870} a^{6} - \frac{1}{2} a^{5} - \frac{4812}{44935} a^{4} - \frac{2531}{8987} a^{2} + \frac{293}{946}$, $\frac{1}{89870} a^{23} - \frac{687}{89870} a^{21} + \frac{509}{89870} a^{19} + \frac{447}{89870} a^{17} + \frac{1457}{44935} a^{15} + \frac{12137}{44935} a^{13} + \frac{2197}{8170} a^{11} - \frac{1}{2} a^{10} - \frac{8571}{89870} a^{9} - \frac{3807}{89870} a^{7} - \frac{1}{2} a^{6} - \frac{4812}{44935} a^{5} - \frac{2531}{8987} a^{3} + \frac{293}{946} a$, $\frac{1}{7638950} a^{24} + \frac{3}{7638950} a^{22} + \frac{118226}{3819475} a^{20} + \frac{351657}{7638950} a^{18} + \frac{263}{347225} a^{16} - \frac{13537}{694450} a^{14} - \frac{1}{2} a^{13} - \frac{13378}{224675} a^{12} - \frac{1}{2} a^{11} + \frac{1759339}{3819475} a^{10} + \frac{122}{201025} a^{8} - \frac{1}{2} a^{7} - \frac{3508193}{7638950} a^{6} + \frac{1636876}{3819475} a^{4} - \frac{3200657}{7638950} a^{2} - \frac{1}{2} a + \frac{29587}{201025}$, $\frac{1}{7638950} a^{25} + \frac{3}{7638950} a^{23} + \frac{118226}{3819475} a^{21} + \frac{351657}{7638950} a^{19} + \frac{263}{347225} a^{17} - \frac{13537}{694450} a^{15} - \frac{13378}{224675} a^{13} - \frac{1}{2} a^{12} - \frac{300797}{7638950} a^{11} - \frac{1}{2} a^{10} - \frac{200781}{402050} a^{9} - \frac{1}{2} a^{8} + \frac{155641}{3819475} a^{7} + \frac{1636876}{3819475} a^{5} - \frac{1}{2} a^{4} + \frac{309409}{3819475} a^{3} - \frac{1}{2} a^{2} - \frac{141851}{402050} a - \frac{1}{2}$, $\frac{1}{801968702694067864307577420250} a^{26} - \frac{7961464319335167599091}{801968702694067864307577420250} a^{24} + \frac{165110168513700952411158}{80196870269406786430757742025} a^{22} + \frac{3069872686612919128317897567}{400984351347033932153788710125} a^{20} - \frac{16443039159492839840162159321}{400984351347033932153788710125} a^{18} - \frac{14475131372525622588698825833}{400984351347033932153788710125} a^{16} - \frac{2321865883091506467997257849}{801968702694067864307577420250} a^{14} - \frac{1}{2} a^{13} - \frac{1828975306673685621459496859}{72906245699460714937052492750} a^{12} - \frac{3023951627464658996135931396}{9325217473186835631483458375} a^{10} - \frac{6360990085335086781064735411}{47174629570239286135739848250} a^{8} - \frac{3551664313508888132629141353}{400984351347033932153788710125} a^{6} - \frac{4160749943052043243011354312}{80196870269406786430757742025} a^{4} + \frac{198475908342842901576951528}{21104439544580733271252037375} a^{2} + \frac{129533876773782101989931243}{1110759976030564909013265125}$, $\frac{1}{15237405351187289421843970984750} a^{27} + \frac{468447960543296225282082}{7618702675593644710921985492375} a^{25} + \frac{6695124543208000713494987}{1523740535118728942184397098475} a^{23} - \frac{134148164893227132834068638381}{15237405351187289421843970984750} a^{21} + \frac{250977740930978956620335102093}{15237405351187289421843970984750} a^{19} - \frac{316348688489665522705648235661}{15237405351187289421843970984750} a^{17} + \frac{99700335791227439177841007883}{7618702675593644710921985492375} a^{15} + \frac{573298577611301559306757254583}{7618702675593644710921985492375} a^{13} + \frac{161880199778947245071135076592}{7618702675593644710921985492375} a^{11} - \frac{1}{2} a^{10} + \frac{3290497756484872124590170499643}{15237405351187289421843970984750} a^{9} - \frac{1}{2} a^{8} - \frac{564195322185700913600426059311}{1385218668289753583803997362250} a^{7} - \frac{1}{2} a^{6} - \frac{424153802117684074796242132077}{3047481070237457884368794196950} a^{5} + \frac{28156513694559321251457327441}{801968702694067864307577420250} a^{3} - \frac{1}{2} a^{2} + \frac{4463743898903588100150205691}{42208879089161466542504074750} a - \frac{1}{2}$
Class group and class number
$C_{29}$, which has order $29$ (assuming GRH)
Unit group
Rank: | $14$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
| |
Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K!f(g): g in Generators(UK)];
| |
Regulator: | \( 1125038158310.573 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
|
Class number formula
Galois group
A solvable group of order 56 |
The 17 conjugacy class representatives for $D_{28}$ |
Character table for $D_{28}$ |
Intermediate fields
\(\Q(\sqrt{197}) \), 4.2.737371.1, 7.1.52439613407.1, 14.2.541732871692295987086853.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | $28$ | $28$ | ${\href{/LocalNumberField/5.2.0.1}{2} }^{14}$ | ${\href{/LocalNumberField/7.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{14}$ | $28$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{14}$ | R | ${\href{/LocalNumberField/23.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{13}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | $28$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{13}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{13}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{14}$ | ${\href{/LocalNumberField/47.7.0.1}{7} }^{4}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{13}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{13}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
$19$ | $\Q_{19}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
$\Q_{19}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
$197$ | 197.2.1.1 | $x^{2} - 197$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
197.2.1.1 | $x^{2} - 197$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
197.2.1.1 | $x^{2} - 197$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
197.2.1.1 | $x^{2} - 197$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
197.2.1.1 | $x^{2} - 197$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
197.2.1.1 | $x^{2} - 197$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
197.2.1.1 | $x^{2} - 197$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
197.2.1.1 | $x^{2} - 197$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
197.2.1.1 | $x^{2} - 197$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
197.2.1.1 | $x^{2} - 197$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
197.2.1.1 | $x^{2} - 197$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
197.2.1.1 | $x^{2} - 197$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
197.2.1.1 | $x^{2} - 197$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
197.2.1.1 | $x^{2} - 197$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |