\\ Pari/GP code for working with number field 28.2.3356956934459190134013901917828042334392800598032384.1 \\ (Note that not all these functions may be available, and some may take a long time to execute.) \\ Define the number field: K = bnfinit(x^28 - 29*x^26 + 319*x^24 - 928*x^22 - 2494*x^20 - 21982*x^18 + 156890*x^16 - 105676*x^14 - 41383*x^12 - 3321805*x^10 + 13163303*x^8 - 22596220*x^6 + 20965492*x^4 - 8196560*x^2 - 1114064, 1) \\ Defining polynomial: K.pol \\ Degree over Q: poldegree(K.pol) \\ Signature: K.sign \\ Discriminant: K.disc \\ Ramified primes: factor(abs(K.disc))[,1]~ \\ Integral basis: K.zk \\ Class group: K.clgp \\ Unit rank: K.fu \\ Generator for roots of unity: K.tu[2] \\ Fundamental units: K.fu \\ Regulator: K.reg \\ Galois group: polgalois(K.pol) \\ Frobenius cycle types: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$: idealfactors = idealprimedec(K, p); \\ get the data vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])